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1.0 EXECUTIVE SUMMARY 

l. l INTRODUCTION AND BACKGROUND 

The production of high-quality specifications for systems and software 
is a long-standing and well recognized problem area .. Traditional forms of 
specification, usually in free-form English text, have persistently been 
plagued with deficiencies such as incompleteness, inconsistency, ambiguity 
and other errors. Verification of such specifications is usually manual, 
hence, itself.error-prone and often incomplete. 

To address aspects of this pioblem area, several prom1s1ng automated 
tools have been develo.ped in recent years. Three particular tools of interest 
to RADC are RSL/REVS [1 ,2], PERCAI\1 [3,4], and AUTOIDEF [5,6,7]. A summary 
description of each tool follows: 

• RSL/REVS. The Requirements Statement Language (RSL) and the 
Requirements Erigineering and Validation System (REVS) are com­
ponents of the Software Requirements Engineering Methodology 
(SREM) developed by TR\~ for the U.S. Army Ballistic Missile 
Defehse Advanced Technology Center (BMDATC). The REVS software 
provides capabilities to translate RSL requirements statements, 
maintain a requirements data base, analyz~ the relational data 
base for desirable properties or errors, extract particular sub­
sets of the data base under user control, and generate executable 
simulations constrained by· the requirements statements. REVS 
consists of a set of Pascal programs, a Data Base Control System 
written in FORTRAN, and a set of support utilities ihcluding the 
TRW Pascal Compiler Writing System. 

• PERCAM. This tool, developed by TRW for the rapid construction 
and execution of modular simulations, was originally .used in the 
simulation of large-scale air defense attacker/defender scenarios. 
Subsequently, PERCAM has been used in pre 1 imi nary performance 
studies for a number of different systems where resource con-
straints are a significant issue. · 

1 AUTOIDEF. This large FORTRAN software package is being developed 
by Boeing Computer Services under contract to SofTech, Inc., for 
support of the Air Force ICAM program. This tool automates IDEF 
diagrams, a specialized form of the diagrams used by SofTech in 
their Structured Analysis and Design Technique (SADT). Build 1, 
which became operational on 10 August 1979, provides the capabil­
ity to create and store IDEF diagrams~ Build 2, yet to be cnm­
pleted, provides consistency checking capability. 

1 
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These tools were developed at different times, for different purposes on 
various types of Control Data Corporation (CDC) computers. In order to fur­
ther evaluate, improve and integrate these tools, and eventually make the 
products widely available within the Air Force, a compatible. hardware/software/ 
communication environment is needed. This environment has been named the 
Specifica_tion Tools Environment (STE). The study reported in these pages is 
concerned with.the requirements upon the STE and candidate ways of implementing 
those requirements. 

1.2 OBJECTIVES AND SCOPE 

The objective of the STE Study was to determine hardware, software, and 
communication configurations for implementation of an environment capable of 
supporting the integration and development of automated tools for the analysis 
of system and software specifications. Existing environment implementations 
by industry and Government sources as well as new proposed implementations 
were considered. · · 

The objective ~as accomplished through four study tasks as follows: 

I Task l : . Define STE Fu~cti~nal Requirements 

• Task 2: Determine Adequate ARPANET Hosts 

• ·Task 3: Survey Alternate STE.Hosts 

• Task 4: Evaluate REVS Language Conversi.on. 
. . 

The first task was aimed at determining the hardware, software, and 
communication requirements imposed on the environment by the tools. The 
second task evaluated the suitability of ex.isting ARPANET systems using the 
requirements developed in the first task. -The third task evaluated standard 
computer industry hardware/software configurations for possible use in a 
dedicated environment. The fourt~ task assessed the feasibilitv and approxi­
mate-cost to rewrite the Requirements Statement Language/Requirements · 
Engineering Validation System (RSL/REVS) into some other more widely avail-
able language. · 

The last task was included because RSL/REVS is written in the Pascal 
language, not one of the approved Air Force standard higher-order languages. 
Not only is REVS in Pascal, it fully utilizes all of the features of the 
language. When the STE Study was initiated i·n 197~, few available Pascal 
compilers fully impl~mented the language. ·rn the past year the situation 
has dramatically improved as a number of powerful Pascal compilers have been 
introduced on a wid~ .range of machin~s. 
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1.3 STUDY CONCLUSIONS AND RECOMMENDATIONS 

There are three nodes on the ARPANET using CDC computer systems that 
have immediate capability to provide the STE. These are Brookhaven National 
Labs (BNL), Lawrence Berkeley Labs (LBL), and the Naval Air Development 
Center ( NADC). Two of the STE too 1 s, REVS and PER CAr~, are a 1 ready ins ta 11 ed 
at NADC. Installation of REVS at one of the other nodes would require one­
half to-two man-years of technical effort, depending upon details of the host 
operating system. AUTOIDEF would have to be installed at any of the nodes. 

Of the non-CDC ARPANET nodes, Argonne National Labs (ANL) and University 
of California at Los Angeles (UCLA-CCN), provide the best capabilities. Both 
nodes have large IBM 3033 mainframes. Using the new IBM Pascal compiler, it 
is believed that REVS could be installed on an IBM machine with about two 
man-years of technical effort. 

Two Univac systems on the ARPANET have the processing power to provide 
the STE, but there are still deficiencies in the features of existing Pascal 
compilers for Univac machine~. A DEC VAX 11/780 at the Naval Underwater Sys­
tems Center (NUSC) could provide the STE if main memory was upgraded to two 
megabytes from the present one megabyte. (REVS is being installed on the VAX 
under contract to the Ballistic Missile Defense Advanced Tethnology Center 
(BMDATC) in Huntsville, Alabama.) · 

Cost and availability information for ARPANET nodes was fragmentary and 
difficult tb acquire. l~hile sufficient information was provided by ANL and 
LBL to derive cost estimates for REVS runs, and these estimates were comparable 
with each other, they were significantly lower than results derived from a 
cost estimating relationship based bn actual REVS runs at NADC. Comparative 
benchmark runs at candidate nodes would be necessary to verify real costs. 
There are three potential disadvantages of using an existing ARPANET node to 
host the STE: 1) possible unavailability of the node when needed; 2) inabi­
lity to tailor the node configuration to STE needs; and 3) inab·ility to pro-
cess classified data without expensive add-on equipment. · 

To promote widespread technology transfer of STE tools throughout the 
Air Force, there is great merit to hosting the tools on a popular machine that 
is affordable, in terms of cost, to a wide spectrum of users. Our survey of 
alternate hosts indicates that the DEC VAX ll/780 is currently the best can­
didate to further this objective. Our survey of color graphics terminals 
resulted in selection of the Tektronix 4027 terminal _for STE support. 

We assessed the effort required to convert REVS to one of the standard 
languages, JOVIAL J73, FORTRAN, or COBOL, or to the forthcoming DoD standard 
language, ADA. We concluded that conversion to ADA would provide the greatest 
future benefit at least cost, followed by JOVIAL J73 in second place. Conver­
sion to FORTRAN or COBOL would b~ costly, and since these languages are be­
coming obsolescent in the future, such a conVersion would be of minimal benefit. 
With the recent introduction of a number of good Pascal compilers and the 
exploding popularity of'the language, we recommend that the Pasc~l. implementa­
tion of REVS be maintained until sufficient reliable ADA compilers are avail­
able and the future of ADA and JOVIAL J73 becomes more clear. 
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1.4 ORGANIZATION OF THIS REPORT 

Th~ remainder of this report documents methods of investigation and spe­
cific results for the four tasks of the STE Study. Task 1 results are reported 
in Sections 2 to 5. Task 2 results are reported in Section 6. Sections 7 and 8 
address the results of Task 3, while Section 9 is devoted to Task 4. Section 
10. lists major references cited in the report. 

Section 2 is devoted to descriptions of the tools and their software 
environment requirements. Each of these tools is addressed separately. Para­
graph 2.5 deals with utility software needed for the STE independent of the 
particular tools. 

Section 3 is devoted to hardware resources necessary to support each 
tool. Where a tool has been developed to interface with specific hardware, 
we identify the particular item and its main characteristics. Discussion of 
substitute equipment and necessary tool rnodifications is inserted when appro­
priate. Quantitative estimates are also made for memory and storage sizing. 

Section 4 presents run time and workload estimates for each tool based 
upon current i nsta 11 ati ons and observed usage patterns. This information was 
used to evaluate speed requirements for various candidate configurations and 
operating policies. Section 5 concludes the resul~s of Task 1 with a consoli­
dated summary of requirements for the STE, considering the.combined needs 
for REVS, PERCAM, and AUTOIDEF. Two integration issues are identified for 
future consideration. 

Section 6 discusses results of a survey of candidate ARPANET hosts for 
the STE. Although personnel from several ARPANET nodes readily cooperated to 
provide their best information, we were surprised to find that reliable, cur-
rent information is generally not available. Even the ARPANET Network Informa­
tion Center (NIC) has not been able to accumulate accurate cost and workload data. 

Section 7 summarizes the evaluation of alternate STE hosts of a type 
capable of near-term connection to the ARPANET and suitable for use in a 
dedicated STE mode. Since current· ARPANET nodes include the common large 
mainframes provided by all of. the major computer vendors, our emphasis was 
on investigating economical high performance 11 midicomputer 11 systems. Candi­
date color graphics terminals are also discussed. 

Section 8 discusses the implications of operating the STE in a dedicated, 
single-level security mode. The discussion assumes use of a vendor-supplied 
commercial operating system. 

:Section .9 assesses the feasibility of converting the REVS tool, now coded 
in Pascal, to one of the approved DoD higher order languages: ADA, JOVIAL J73, 
FORTRAN, or COBOL. The more modern languages, ADA and J73, were found to be 

·more cost-effective candidates than the early languages, FORTRAN and COBOL. 

Section 10 lists references cited in· the report, and Appendix A summarizes 
information collected about the individual ARPANET nodes discussed in Section 6. 
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2.0 THE TOOLS AND THEIR SOFTWARE ENVIRONMENT 

This section, and the following Section~ 3, 4, and 5, provide .results of 
Task 1 of the STE Study. The qbjective of Task 1 was to define the hardware/ 
software functional requirements imposed on the STE by the characteristics 
of the three candidate STE tools: REVS, PERCAM and AUTOIDEF. The results of· 
Task 1 were used as inputs to Tasks 2, 3, and 4: 

The first paragraph in this section describes the methods of investiga­
tion used to accomplish Task 1. The subsequent paragraphs in this section 
present descriptions of each tool, specific concepts implemented in the tool, 
and its major software components. After the introductory. dis cuss ion about 
each tool, its specific software requirements upon the STE are presented, 
based upon current implementation and installations. The last paragraph in 
the section addresses utility support independent of the too 1 s considered. 

2.1 METHODS OF I~VESTIGATION: TASK 1 

Our approach in conducting this study was to investigate the requirements 
of the STE with respect to software, hardware and comm~nications. For each 
of the tools, TRW first gathered information concerning the following: 

e Major source modules 
1 Programming language(s) 

e Job control mechanisms 

1 Source inputs (e.g., system data, test cases)_ 

• Utilities. 
Each of the above areas was assessed to establish the requirements each of 
the tools imposed on the STE. 

Next we examined the equipment currently used to host each tool. The cur­
rent installations and hardware used were originally defined.either by 1) spe­
cific customer requirements, or 2) -availability (the customer happened to have 
specific equipment, but this was not mandatory to support the tool). Regard­
less of the original requirement, the current installations are the reference­
point from which the transfer of the tools to a different environment must be 
assessed. Substantial departure from current features and assumptions may add 
significant tool modification costs to adapt to a new environment. 

Third, we gathered current perfonnance and workload data to approximate 
the STE load to be serviced. These will be used to assess various STE candi­
dates. We have avoided stating explicit run time requirements for the tools 
because CPU speed alan~ is not a sufficient yardstick. Other factors such as 
availability of non-dedicated hosts, time-sharing service policy and cost/ 
performance trade-offs will be major considerations in detennining·adequate 
configurations. 

Finally, we examined the separate requirements for each tool, identified 
the most severe requirements over the set of tools, and synthesized a summary 
set of requirements for the STE as a whole. 
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I 
2.2 RSL/REVS 

The Requirements Statement Language (RSL) and the automated Requirements 
Engineering and-Validation System (REVS) are two components of the Software 
Requirements Engineering Methodology (SREM) d~veloped by TRW and delivered to 
the U.S. Army Ballistic ~1issile Advanced Technology Center (BI~DATC) in 1976 as 
an increment ·in the BMDATC Software Development System (SDS). The third com­
ponent of SREM, the methodology proper, ·directs the use of the language and 
tools in the development of software requirements. 

As a starting point i~ this paragraph, we will describe RSL and REVS in 
sufficient detail to allow an understanding of the requirements upon the STE 
that follow. Because the REVS user interface has been designed for simplic­
ity,1 it is difficult for the user to comprehend that what (to h.im) appears a 
mono,lithic program is, in reality, an intricate multi-job execution streani of 
a s~stem of programs controlled by automated job stream manipulation within 
REVS\. This process is discussed in detail in 2.2.4 and explains why transfer 
of REVS to a new environment is not a straight-forward task.· 

i 
2.2.1 Requirements Statement Language (RSL) 

1

RSL is a machine-reada~~e~ English-like language for stating software re­
quirements. The basic structure of RSL is very simple and is based on four 
primitive language concepts: elements, attributes, relationships, and struc­
tures. 

Elements 

ETements in RSL correspond roughly to nouns in English. They are 
those objects and ideas which the requirements analYst uses as build­
ing blocks-for his description of the system requirements. Each ele­
ment has a unique name and belongs to one of a number of classes 
called element types. Some examples of standard element types in 
RSL are ALPHA (the class of functional .processing steps), DATA (the 
~lass of conceptual pieces of data necessary in the system), and 
R NET. (the class of processing flow specifications). 
~ . ' 

Attributes 

Attributes are modifiers of elements somewhat in the manner of adjec­
tives in English; they formalize important properties of the elements. 
Each attribute has associated with it a set of values which may be 

·mnemonic names, numbers, or text strings. Each particular element 
may have only one of these.values for any attribute. An example of 
an attribute is INITIAL VALUE which is applicable- to elements of type 
DATA. It has values whTch specify what the initial value for the 
data item must be in the implemented software and for simulations. 

Relationships 

Th~ relationship (or relation) in RSL may be compared with an English 
ve~b. More properly, it corresponds to the mathematical definition 
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of a binary relation, a statement of an association of some type 
between two elements. The RSL relationship is non-commutative; it 
has a subject element and an abject element which are distinct. 
However, there exists a complementary relationship for each speci­
fied relationship which is the converse of that specified relation­
ship. ALPHA INPUTS DATA is one of the relationships in RSL; the 
complementary relationship says that DATA is INPUT to an ALPHA. 

· Structures 

The final RSL primitive is the. structure, the RSL representation of 
the flow graph. Two distinct types of structures have been identi­
fied. The first.is the R NET (or SUBNET) structure. It identifies 
the flow through the functional processing steps (ALPHAs) and is 
thus used to specify the system response to various stimuli. The 
second structure type is the VALIDATION PATH, which is ·used to 
specify performance of the system. -

Through the use of these four primitive language concepts~ a basic re­
quirements language is provided which includes concepts for specifying pro­
cessing flows, data processing actions, and timing and accuracy requirements. 
In addition, informative and descriptive material, and management-related 
information may be specified. The concepts of this language consist of 
twenty-one element types, twenty-one attributes, twenty-three relationships, 
and two types of structures. RSL can be extended to include additional con­
cepts by defining new element types, attributes, or relationships. This allows 
the language to be tailored to the needs of a specific problem or project. 

2.2.2 Requirements Engineering and Validation System (REVS) 

The Requirements Engineering and Validation System (REVS) is an inte­
grated system of software which aids in the development, maintenance, valida­
tion, and documentation of software requirements. REVS is designed to allow 
the requirements engineer to state and modify requirements information over a 
period of time as the requirements are developed. The RSL statements that an 
engineer inputs to REVS are analyz'ed, and a representation of the information 
is put into a centralized data base. This data base is called the Abstract 
System Semantic Model (ASSM) because it maintains information about the re­
quired data.processing system (RSL semantics) in an abstract, relational 
model. Once ent~red into the ASSM, the requirements are available for subse­
quent refinement, extraction, and.analysis by the REVS software. 

From a user point of view there are five major functional capabilities 
which REVS provides: 

~ Processing of RSL. 

e Interactive generation of Requirements Networks (R NETs). 

e A~alysis of requirements and output of requirements in RSL 
and/or in specially formatted reports. 
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• Generation and execution of functional and analytic simulators 
from functional requirements and models or algorithms, and the 
generation and execution of simulation post-processors from 
analytic performance requirements. 

t Processing of extensions to RSL. 

REVS and RSL allow the engineer to enter requirements into REVS as they 
are developed, with REVS accumulating the information in the requirements data 
base and checking for consistency and completeness as new data is entered. 
Consequently, althouqh the REVS capabilities may be applied in any order, in 
general, the user will initially enter RSL and then request various analyses to 
be: performed by the RADX function. New entries will be made and analysis re­
peated until the requirements have been developed sufficiently for a simulation 
toi be meaningful, and useful. At that time, a simulator and post-processor may 
be: generated. The simulator may then be executed numerous times and the data· 
r~corded and analyzed. Based on the results, this sequence may be repeated, 
starting with the modification of requirements ~lready input to REVS or the 
addition of new ones. The sequence will also be repeated as system require~ 
ments change or new requirements are imposed. When the user is satisfied that 
the requirements are correct., based upon the results of static and dynamic 
ar:Ja lysis, REVS will provide outputs necessary to write a software requirements 
specification. 

·Each of the major capabilities. identified above is allocated to a differ­
ent functional component of REVS. The capabilities and the appropriate func­
tions are described briefly below. 

2.:2. 2. 1 Processing RSL 

The analysis of RSL statements and the establishment of entries in the 
A~SM corresponding to the meaning of the statements is performed by the RSL 
translation function of REVS. The translation·function also processes the 
modifications and deletions from the data base commanded by RSL statements 
swecifying changes to already-existing entries in the data base. For all 
types of input processing, the RSL translation function references the ASSM 
t6 do simple consistency checks on the input. This prevents disastrous er­
r~rs, such as the introduction of an element with the same name as a pre­
v~ously-existing element~ or an instance of a relationship which is tied to 
ah illegal type of element. Besides providing a measure of protection for 
the data base, this type of checking catches (at an early stage) some of the 
s'imple types of inconsistenc.ies that are often found in requirements specifi­
cations, without restricting the order in which the user adds to or alters 
the data base. 
I 
~.2.2.2 Interactive Generation of R-Nets 

Graphics capabilities to interactively input, modify or display R NET, 
SUBNET, and VALIDATION PATH structures are provided through the REVS filter­
active R-Net Generation (RNETGEN) function. RNETGEN permits entry of struc­
~ures and referenced elements in a manner p~rallel to the RSL translator and 
thus provides an alternative to the RSL translator for the specification of 
ithe flow portion of the requirements. Using this function, the user may 
I 

' 
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develop (either automatically or under direct .user control) a graphical repre­
sentation of a structure previously entered in RSL. Through the use of the 
ASSM, the user may work with either the graphical or RSL language representa­
tion of a structuY·e; they are completely interchangeable. 

The Interact·ive R-Net Generation facility contains full editing can~bili­
ties. The user may input a new structure or he may modify one previously 
entered. At the conclusion of the editing session, the user may elect to 
replace the old structure with the modified one. The editing functions pro­
vide means to position, connect, and delete nodes, to move them, to disconnect 
them from other nodes and to enter or change their associated names and com­
mentary. The size of a structure is not limited by the screen; zoom-in, zoom­
out, and scroll functions are provided. 

2.2.2.3 Analysis and Output of Requirements 

The Requirements Analysis and Data Extraction (RADX) function provides 
both static flow analysis capabiliti~s and the capabilities of a generalized 
extractor system to support both the checking for completeness and consis­
tency in the requirements specification and the development of requirements 
documentation. 

The static flow analysis deals with data flow through the R NEts. The 
analysis uses the R NET structure in much the same manner that data flow 
analyzers for programming languages use the control flow of the program to 
detect deficiencies in the flow of processing and data manipulation stated in 
the requirements. 

The generalized extractor system allows the user to perform additional 
analysis and to extract information from the ASSM. The user can subset the 
elements in the ASSM based on some condition (or combination of conditions) 

. and display the elements of the subset with any appended information he se­
lects. By combining sets in various ways, he can detect the absence or pre­
sence of data, trace refe~ences on the structures, and analyze inter-relation­
ships established in the ASSM. In analyzing user requests and extracting 
information from the ASSM, the extractot system uses the definition of the 
language concepts contained in the ASSM .. Thus, as RSL is extended, the ex­
tensions and their use in th~ requirements are available for extraction. 

2.2.2.4 Generation and Execution of Simulators and Post-Processors 

The automatic Simulation Generation (SIMGEN) function in REVS takes the 
ASSM representation of the requirements of a data processing system and 
generates from it discrete event simulators of the DP system. These s·imula­
tors are driven by externally generated stimuli (e.g., a weapon system model) 
known as a System Environment and Threat Simulati6n (SETS). This driver pro~ 
gram models the threat, or situation, the system environment, and the compo­
nents of a system external to the data processing system. Executable code 
for the SETS must be developed by the user, as are the executable code seg-
ments for ALPHAs described next · 
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Two distinct types of simulators may be generated by REVS. The first 
uses functional _(BETA) models of the processing steps and may employ simpli­
fications to simulate the required processing. This type of simulation serves 
as a means to validate the overall required flow of processing against higher 
level system requirements. 

The other type of simulator uses analytic (GAMMA) models (i.e., models 
that use algorithms similar to those which will appear in the software to 
perform complex computations). This type of simulation may be used to define 
a set of algorithms which have the desired accuracy and stability. Real-time 
feasibility of a system using this algorithm set is not established for any 
~mplementation; instead, the simulation provides an existence proof of an 
analytic solution to the problem. Both types of simulations are used to 
1check dynamic sys tern interactions. 

I Executable code segments ~presenting the BETA and/or ~M~ modeling 
-~levels are developed by the user. These are stored in the ASSM as BETA and 
GAMMA text attributes Of the corresponding processing step (ALPHA) .. 

The SIMGEN function transforms the ASSM representation of the require­
ments into simulation code in the Pascal programming language. The flow 
structure of each R NET is used to develop a Pascal procedure whose control 

/
flow implements thal of the R NET structure. Each ALPHA name on the R NET 
is translated into a call' to a procedure consisting of the model or algorithm 

1 (BETA or GAMMA) for the ALPHA. The models ·or algorithms are Written in Pascal. 
The data definitions an~ structure for the simulation are synthesized from the 
requirements data elements and their relationships and attributes in the ASSM. 

By_automatically generating simulators in this manner from the ASSM, the 
simulations are ins~red to ~atch and trace to the requirements. Ne~ simula­
tors can be generated readily as requirements thange; all changes are made to 
the requirements statements themselves, and are automatically reflected in 
the next gen-eration of the simulator. · 

For analytic simulations, SIMGEN also generates simulation post-proces­
sors based on the statement of performance requirements in the ASSM. Data 
collected from an analytic simulation can be evaluated using the corresponding 
post-processor to test that the set of algorithms meet the required accuracies. 

Both REVS generated simulators and post-processors are accessed.for 
execution through REVS functions; th~ Simulation Execution (SIMXQT) function 
for simulators, and the Simulation Data Analysis (SIMDA) function for simula­
tion post-processors. 

2.2.2.5 Processing Extensions to RSL 

An ASSM contains the RSL concepts used to express requirements as well 
as the requirements. Extensions and modifications to the concepts are pro­
cessed by the RSL Extension translation (RSLXTND) function of REVS. The 
RSLXTND functfon is actually performed by the same software as RSL translation 
but is accessed separately to control extensions to the language through a 
lock mechanism built into. the software. 
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2.2.2.6 REVS Organization 

The above discussion has identified seven functions nf REVS: RSL~ 
RNETGEN, RADX, SIMGEN, SII~XQT, SH~DA and RSLXTND. As shown in Figure 2-1, these 
functions are under the control of a higher level function, the REVS Execu­
tive. The Executive presents a unified interface between the user and the 
different REVS functions. 

2.2.3 Major Components of REVS and Its Support Software 

Twelve major components, he1~ein termed "source modules" are required for 
installation, execution, and maintenance of REVS. These vary in type from 
systems of programs to control decks and system data files transparent to the 
user. 

2.2.3. 1 Pascal Language Source Modules 

Q REVS: The Pascal application software itself consists of over 
42,000 lines of code broken into more than 1100 procedures. To 
our knowledge, it is the largest Pascal ptogram yet built. 

e Compiler Writing System Package (CWS): This software package, 
adapted from a CWS developed by the University of Montreal, is 
used for generating the RSL translator withih the REVS Pascal· 
program. It consists of the following programs and segments: 
- SEMAGEN: This program pre-processes the .extended Backus-Naur 

Form (BNF) of the RSL Language. As output, .it generates 
tables for processing by other programs in the CWS. 

LEXIGEN: This program produces the lexical analyses of the 
generated compiler. 
COMPGEN: This. pr6gram assembles all the gene~ated compiler 
pieces into the compiler program. 

- SYNTGEN: This program builds the tables used by the standard 
syntax generator. 
PROGGEN: This program generates the minimum programs from 
the syntactical structure of the input language. 

- NOYALEX: This is the Pa~cal skeleton for the lexical phase 
of the generated compiler. 

- NOYASYN: This is the Pascal skeleton for the syntactical 
phase for the generated compiler. 
ERREURS: This is the Pascal skeleton for error recovery. 

o Pascal Fonnatting Program: This prog1ram is used to generate 
consistent indentations, to re-position comment fields, and to 
assure that the Pascal code is limited to the first 72 print 
columns, in order to insure unifonnity. 

ll 
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e RISF File: The Requirements-Independent Source File (RISF) 
contains Pascal code skeletons. ·Th~ simulation generator of 
REVS uses this file to build the simulator program. 

2.2.3.2 FORTRAN Source Modules 

• Data Base Control System (DBCS) Package: This software package, 
developed by the University of Michigan, contains the following 
source sub-modules: · 

- The Data Base Control Systems (DBCS) Routines: These routines 
are the heart of the data base system. The DBCS routines 
actually handle ~he I/0 for the data base. 

- The Data Definition Language Analysis (DDLA) Program: This 
program builds description tables and blocks the data areas 
required by the DBCS rciutines from the Data Definition Lan­
guage (DOL) which describes the data base. 

- The DBCS Initialization (D~IN) Program: Th1s program 
initializes a file for use in the data base. 
DBCS Summary (DBSM) Program: This program produces a surnmary 
report as to the amount of data base_ in use. 

• CALCOMP Compatible Plot Routines:. These routines interface with 
the CALCOMP basic plot package to draw ·ellips~s. circles, rec­
tangles, and polygons at sites where the equivalent CALCOMP 
engineering drawing routines are not available. 

2.2.3.3 Special Language Source Modules 

These modules are s~ecial language input~ to the application software 
and transparent to the host system, or are job control and command instruc­
tions native to the host system. 

• Data Definition Language· (DOL) fo~ the REVS RSL Data Ba~e~ 
This source module describes the structure of the REVS/RSL data 
base and is input to th~ DDLA program, described above. 

o Data Definition Language (DOL) for the REVS Simulation Data 
Base: This source module describes the structure of the REVS 
Simulation data base and is used as input to the DDLA program. 

o RSL Integrated Language Description for. the CWS: This source 
module contains the information necessary for the Ct~S to generate 
the RSL translator. This is an extended BNF description. 

e Segmented Overlay Commands (CDC-Dependent): These commands are 
input to the CDC Segmented Loader in order to describe the 
memory scheme to the 1 oader. 

1 

e Job Control Language Decks for Building and Running REVS (CDC­
Dependent): These control language decks are operating system 
and site-dependent. 
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1 Rsl Test Cases: These RSL input f1les are used to test the 
proper operation of REVS. Once REVS is installed, these tests 
can be used as a baseline for performance tuning. 

2.2.4 REVS Job Control 

REVS is invoked as a series of programs through the use of the job con­
trol statements of the operating system. This section illustrates job control 
on the CDC 7600, although it must be recognized that such control is dependent 
on the. host computer operating systems. The following programs must be avail­
able at any _host site: 

1 R~VSPRE tb initialize all files. 
1 R~VSXQT to execute REVS. 

't SIMBUIL to build the REVS-gen~rated simulator and post-processor. 
e SkMRUN to execute a REVS-generated simulator. 

i 

1 T~STRUN to execute a REVS-generated pcis t-processor. 
; 

e SIMSAVE to save a REVS-generated simulator and post-processor. 
I 

t S~MLOAD to reload a REVS-generated simulator and post-processor. 

Following a de~cripfion of these ~rograms immediately below, their implemen­
tation via jo~ stream control cards will be discussed. 

2.2.4.1 REVSPRE Program 

The REVSPRE program provides for the acquisition of necessary files and 
environmental conditioning for use of REVS on the CDC 7600. This program 
acquires all files needed to run REVS and is used only once.at the beginning 
ot a job deck~ The files obtained are: 

LOCAL FILE NAME· 
.. TAPE2 

TAPE~ 
I 

TAPEJO 

TAPEll 

DONNEES 
RISF 

NEST:ER 

PASCAL 

PERMANENT FILE NAME . 
DBNUC 
DBT 
VVDB 

VVDBT 

DONNEES 
RISF 

NESTER 

PASCAL 
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DESCRIPTION 
Predefined nucleus data base. 
Data base tables. 
Empty post-processor data 
base. 
Post-processor data base 
tables. 
RSL- translator input file. 

SIMGEN input file used to 
construct a simulation 
program. 
Utility program to reformat 
Pascal source programs. 

Pascal compiler. 



LOCAL FILE NAME 
*REVS DB 
*REVSABS 

PERMANENT FILE NAME 
DB 
REVS200 

DESCRIPTION 
Empty data base. 
REVS absolute with 20Q·pages 
in LCM. 

All files are assumed to be disk resident·on the account number PTCREVS. 
An alternate account number may be specified by invoking REVSPRE with that 
account number as a parameter, e.g., REVSPRE(acnt). REVSPRE will then attempt 
to acquire all files from this account and will note the account over-ride. 
with a message in the job day-file. 

The final operations performed by REVSPRE are the placing ·of a message 
in the day-file signifying REVSPRE completion. 

2.2.4.2 REVSXQT Program 

The REVSXQT program invokes execution of REVS and controls the acquisi­
tion and disposal of files needed during the REVS step .. REVSXQT provides six 
positional parameters representing file names as follows~ 

REVSXQT( FI LEOl , FI LE02, FI LE03, FI LE04 ,FI LEOS, FI LE06). 

The parameters and their default values are: · 

·FILE ' DEFAULT INTERPRETATION 
FILEOl INPUT Standard REVS input file (REVS.IN). 
FILE02 OUTPUT Standard REVS log file (REVS.LdG). · 
FILE03 OUTPUT Standard REVS output. file (REVS.OUT). 
FILE04 OUTPUT DBCS TAPE6 error file (DBCS.ERR). 

FILE05 OUTPUT SIMGEN debug output file (REVS. DMP). 

FILE06 PUNCH Standard REVS punch file (REVS.PUN) .. 

In addition to the six file over-ride parameters, two other parameters 
are provided. The seventh parameter is used to specify a local file name for 
a program to be executed instead of the nominal REVS absolute. A value of NO 
for the eighth parameter will inhibit the construction of a simulator and 
post-processor regardless of whether the REVS SIMGEN fun~tion is selected. 

All 'files with the default name of OUTPUT will be automatically printed 
by REVS unless the file names are over-ridden on the REVSXQT card. The stan-. 
dard REVS punch file will also be automatically puhched. If any of these file 
names are over-ridden on the REVSXQT ca 11 , the user 1ssumes res pons i bil ity for 
their proper disposition. · 

*These files are acquired only to maintain their disk residence; they are 
immediately returned by REVSPRE. · 
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The initial Phase 1 is conditioned by an empty REVSJSL file. In this 
phase, REVSXQT backs up the control card stream and then copies the users 
REVS inputs, either from INPUT or its over-ride, to the REVSIN file. REVSXQT 
then determines which REVS absolute program to execute, places a message in 
the job day-file, and ~akes a call to the loader to invoke that program. If 
a file name over-ride was given in the seventh parameter, this file name is 
used in the 1 oader ca 11 . A message specifyi-ng the REVS abso 1 ute attached is 
put in the day-file and the loader is then called to execute this absolute. 

Phase Z occurs after the execution of the REVS program. In this phase, 
the Large Core Memory (LCM) scratch files used by REVS are returned, and the 
standard REVSLOG and REVSOUT files are copied to OUTPUT, or to user over-ride 
file names, preceded by banner pages giving the time, date, and file-id. Also 
copied out q.re the DBCS error fi.le and the REVSDMP file if they are not empty. 
Likewise, a non-empty REVS punch file is copied to either PUNCH or an over-
ride file, with no banner. Finally, the CALCOMP plot output file (TAPE4) is 
returned. 

If no simulator was requested by SIMGEN or if it was suppressed by the 
eighth parameter, then REVSXQT terminates by returning the REVSJSL file, and 
putting a message in the day-file. Otherwise, the SIMBUIL program is invoked 
and the address at which to resume execution in REVSXQT is saved in the 
REVSJSL file. REVSXQT wi·ll terminate as above when control is returned by 
SIMBUIL. 

2.2.4.3 SIMBUIL Program 

The SIMBUIL program is called internally by REVSXQT to build a simulator 
and post-processor. SIMBUIL performs the following functions in order, each 
time incrementing the phase number and backing up the control card stream: 

PHASE NUIVIBER 
2 

3 

4 

5 

6 

7 

ACTION 
Execute the NESTER program to reformat the 

· generated simulator. 
Execute the Pascal compiler on the nested 
simulator. 
Construct and execute a file of control cards 
to link the simulator program. 
Execute the NESTER program to reformat the 
generated post-processor. 
Execute the Pascal compiler on the renested 
post-processor. 
Construct and execute a file of control cards to 
link the post-processor program. 
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The result i~ a simulator progtam absolute on file REVSSIM and a post­
processor absolute on file REVSVAL. Other files used in these phases either 
have been printed on output (compilation listings and load maps) or returned. 
SIMBUIL then returns control to REVSXQT through the return address saved in 
REVSJSL. Throughout the several phases of SIMBUIL, appropriate messages des­
cribing the actions being perfon11ed are placed in the job day-file. 

2.2.4.4 SIMRUN Program 

The SIMRUN program executes a simulator generated by the SIMGEN function 
of REVS. The simulator may have been generated in a previous REVSXQT step, or 
loaded from a tape or disk file by the SIMLOAD program, either of which will 
supply the associated files needed. Execution of the SIMSXQT function in a 
previous REVSXQT step is required to supply necessary simulator input. The 
SIMRUN program is invoked by a control card specifying the word SIMRUN. 

On ·initial entry, SIMRUN will place a banner page on OUTPUT, set the 
phase number to eight, back up the job control card stream, and call the 
loader to execute the REVSSIM file. (Note: the banner page is written since 
REVSSIM may write directly on OUTPUT.) 

After the simulator execution, any validation data generated is copied 
to OUTPUT preceded by a banner page, the phase number set to nine and the job 
control card stream backed up .. The loader is called io execute the REVS post­
processor data base builder (VVDBLDR). Following that execution, SIMRUN 
returns tne REVSJSL file, and terminates with a message to the day-file. 

2.2.4.5 TESTRUN Program 

The TESTRUN program executes a simulation post-pro~essor generated bj the· 
SIMGEN function of REVS. The post-processor may have been generated in a pre­
vious REVSXQT step, or loaded from a tape or disk file by the SIMLOAD program. 
The recording data base used by the post-processor is generated by execution 
of a simulator, and is saved along with a simulator by the SIMSAVE program. 
(A null data base is generated if the simulator is saved prior to execution 
in a SIMRUN step.) Execution of the -SIMDA function in a previous REVSXQT 
step is required to supply necessary post-processor control input. The TESTRUN 
program is invoked by a control card specifying the word TESTRUN. 

TESTRUN operates in a single phase and does not need to back up the job 
control card stream. First TESTRUN places a banner page on OUTPUT for the 
subsequent post-processor execution data. Then, the post-processor program 
(REVSVAL) is executed by a loader call. TESTRUN does not regain control after 
this ~xecution. · 

2.2.4.6 SIMSAVE Program 

The SIMSAVE program is used to combine REVS-generated simulator and post­
processor related files onto a single file to assure their consistency. SIM­
SAVE copies the REVS generated simulator absolute (REVSSIM), the Event Enable­
ment Definition File (EEDF), the REVS generated post-processor absolute 
(REVSVAL), and the post-processor d~ta base file (TAP~lO) onto a local file. 
named SIMFILE. ' 
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! 
Thes~ files are combined on a local fiJe named SIMFILL. This file. can 

then be s~ved on.~isk or.ta~e by using th~ appropriate CDC co~trol cards. . 
The- files combined on SIMFILE incl~de the load. modules for the stmul~tcir and 
post-processor programs' as well as the other. files. n~cessary fo'r thei.r e~e:-

. cution.. The recordi'ng data base gener9,ted by execution .of a gamma simulator 
is included, (a null data. base is· generat'ed if the simu)ator is saved p'ri.or to 
execution in a SIMRUN step). Th~ SIMSAVE program is invoked by a control card 
specifying the word SIMSAVE. 

2.2.4.7 SIMLOAD Program . 

. The SIMLOAD program reconitructs the REVS simuiato~ and post-processor 
files preyiously saved by the SIMSAVE program. The SIMLOAD program ass.umes 
that these .. _files are available-on a local file. na-med SIMFILE, the user is 
responsib}e fOt;' $Upplying the necessary .CDC fi-le cards :to o~tain .this local 
file. After the SIIVILOAD program is complete, the loaded simulator and post­
processor: may be executed by the SIMRUN and TESTRUN progral)ls after, the re-
quired-SIMXQT and SIMDA-inputs are. supplied iri a REVSXQT step. . .. 

The SIMLOAD program is used to retrieve the four files- pla~ed on SH1FILE 
by a previous execution of SIMSAVE. These ffles are copied from SIMFILE and 
p 1 aced oni the files named _REVSSIM, EEDF, REVS VAL, and. TAPElO. 

2. 2. 4. 8. REVS Con.trol Stream_ Sequence 

Usin'g these program~, the normal job set-up can be verY simple, requiring 
a job card to identify the job and acquire necessary resources. Even though 
the job set-up appears simple to the user, the actual job accomplishment de­
pends on .a complex job control stream sequence, which niust be tailored for 
each hos~ machine. _ Its implementation- on the _CDC 7600, par~ially described 
above,-is_-presen,te_d .in context.in this paragraph. 

. REVS is executed within a multi-phase control-stream. This. control stream 
is_ necessary to control the different stages of processing. that RE,VS must do. 
This section-describes those .phases and ~ow they- are .controlled by the REVS 
program. ; Ffgure 2.,.2 illustrates- the control stre.am a-n·.d points -(A ,through P) 
are_cited th-roughout the following discussion·. _ · · 

REVS is initially called by the control ~tatement calle-d REVSPRE -(A) 
which is ,:t>rought into memory and generates the. control statements for the file 
assignments in-:anticipation of the REVS run.· After the fi.le assignments are 
made, the user may use his own control statements. to redefine the files tha·t 
are different from the defaults. This allows. the-user to specify his own .data 
base rather than the standard initial data base. When the REVSXQT statement 
is encountered (B), the REVSXQT control program finishes the file assignments 
required ·to run REVS, and generates the control statement to bring in the REVS 
program itself. After these control statements are ·processed (C) the REVS 
program exec(Jtes- and reads in the- RSL, the REVS. command 1 anguage, and the RSL 
statements that_are t~ be processed. The REVS program, at this point, cqnsists 
-of. Pasca 1 and the necessary data base. to analyze RSL .. Special. communi cation is 
required: between the_ REVS program and the REVSXQT program (D) where -the program 
informs REVSXQT as to whether further processing is re:quired for sim!Jlation. 
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If simulation has not been requested, the REVS job stream terminates at this 
point (E). If a simulation is required, a control statement switches (F) to 
the beginning of the execution of the program SIMBUIL which constructs the 
simulator. First, the NESTER program is called to improve the format of the 
generated simulator. The SIMBUIL program generites the control statements to 
bring in SIMBUIL a second time (G), where control statements are generated by 
SIMBUIL to call the Pascal compiler to compile the g~nerated simulation pro­
gram. SIMBUIL is called in again (H) to gener'ate control statements to bring 
in the loader to generate an absolute version of the simulation program.· Next, 
SIMBUIL is brought in once more (I) to nest the Pascal generated post-processor. 
When that is completed, SIMBUIL is called again (J) to generate the statements 
to call the Pascal compiler to compile the post-processor. After that compi­
lation,,SIMBUIL calls the loader into memory to generate an absolute version 
of the simulator post-processor program (K). Then, at (L), a user-supplied 

·control statement, SIMRUN, calls in the simulation run program. This program 
generates the neces·sary control statements to actually execute the simulator. 
The simulator is brought into memory, is executed, and then exits from memory . 

. Control then brings in VVDBLDR, the data base builder prog~am (M), executes 
it, builds a data base from the s imul ati on run, and then exits from memory. 
At point (N), the user-supplied control statement TESTRUN may call the TESTRUN 
program to generate the control statements to run the post-processor. If the 
user wishes to save the simulator, the SIMSAVE command is issued by user which 
calls in the SIMSAVE program (0) to generate the necessary control statements 
to save the absolute of th.e simulator and its post-processor as a permanent 
fi 1 e. 

Once the simulator and post-processor have been saved, the sequence F to K 
need not be repeated for subsequent runs unless modifications are necessary. 
When the"REVS command stream contains a SIMXQT or SIMDA command without a 
preceding SIMGEN command, REVSXQT at (D) wi 11 arrange for SIMLOAD to be l:>rought 
in to recall the saved files and generate the proper control statements (P)~ 
The· sequence L to 0 is then perfonned as before. 

2.2.5 Current REVS Installations 

REVS is currently operational at five sites shown in Table 2.1. The TI­
ASC version at NRL was an early release and does not include subsequent. changes 
and performance enhancements. In addition, this year, BMDATC is sponsoring 
transfer of REVS to a DEC VAX ll/780 at the Advanced Research Center (ARC). 

2.2.6 REVS Software Env-i.ronment.Reguirements 

2.2.6.1 Pascal Compiler Requirements 

The Pasca 1 used in the REVS software is highly compatible with the "stan­
dard11 set forth by Jensen:and Wirth.· However, there are some elements' of the 
standard language which are explicitly stated to be i~plementation dependent. 
Other elements are defined in a manner which allows different interpretations. 
Still other elements which are clearlY needed to support software development 
and maintenance are not part of the standard. 
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TRW has spent considerable resources to modify and improve a bas.ic CDC 
6000 series P~scal system in order to implement a highly usabl~ system c~pable 
~f supporting REVS on several differen~ CDC computing systems. At present, 
more compilers are being offered on the market by vendors of various machines. 
Not all of these provide the sophi s ti cation required to support REVS. An STE 
Pascal compiler must support the following REVS needs: 

l. Nesting Limits- REVS is a highly structured software program. 
As such, there is extensive ~se of language coristruct nesting, 
both statically (e.g., procedures defined within procedures) 
and dynamically (e.g., recursive calls to handle recursive REVS 
data and· control structures). The currently defined static 
nesting is nine levels deep while the dynamic nesting is a . 
function of the RSL constructs and has no definite limit. Adap­
tation of REVS to nesting limits would be extremely difficult and 
would impose limits on the supported RSL constructs. 

2. Procedure Size Limits ..:. REVS contains some very large Pascal pro­
cedures, both in terms of the code space ( "'500 lines) and in. 
terms of the number of variables defined ("'300). Partitioning 
these procedures into smaller pieces would cause considerabl~ 
breakage to the current REVS software structure. 

3. Procedure Number Limits - The current REVS program contains over 
1100 Pascal procedures and functions. Reducing this number would 
require a considerable effort to restructure the REVS code and 
duplicate· blocks of code in several locations. 

4.. Dynamic Storage Implementation - REVS makes extensive use of 
the Pascal dynamic storage management to re-use the same storage 
area for multiple purposes. This requires a full implementation 
of both NEW and DISPOSE. Restructuring REVS to operate in a 
limited memory space without this implementation is probably not 
feasible. The alternative NEW,. MARK, and RELEASE implementation 
is of only limitedutility to REVS. 

5. File Restrictions - REVS uses many Pascal files, both local to 
the REVS program (i.e., scratch files) and global (i.e., known 
outside the REVS program). These files are declared at several 
levels in REVS and are both textual and non-textual in nature. 
REVS could not be made operational without non-textual files. The 
inability to declare global files at any level would involve 
crinsirlerable breakage to the ~xisting REVS software. 

6. Interface to FORTRAN - The data base control system used to imple­
ment the REVS OBCS is written in FORTRAN and uses a FORTRAN random 
access file to mairitain the data base. The Pascal system used 
must, therefore, support the calling of FORTRAN routine~ and· 
functions from Pascal and must allow a mixture of FORTRAN and 
Pascal I/0 (on different files). 
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7. ·support of GOTO's -.Several of the REVS functions ··use G.OTO's ... , . 
. which transfe.r control out of the pro.cedure ill wh·i ch the GOTO.. . 
·appears-. This is used. to efficiently handle certain ·error:· c'on-:-: 

ditions and to.allow the termination of certain processe$ .(e.g~, 
user termination ·of on-:line -RADX output) without thE; nee·d fOr .. _ 
extensive termination code. The revision of REVS to av6ia the 
need for these GOTO'~ would be a substantial task and would 
incre.ase :the s;ize of .the REVS program... . 

8. Separate Compilation - It may be quite expensive to compile the 
entire REVS ·program every time a change is made. Frequent changes 
will undoubtedly be required ·during the REVS installation, with 
less frequent changes during th'e maintenance 'period. The inabil­
ity to separately ·compile parts of REVS would be costly, pro­
bably both in time and computer :resource usage ... In addition, the 
current configuration of the REVS generated post-processor re­
quires the existence of separately compi.led Pascal_ p_rocedures . 

. The revision of the. SIMGEN function to generate the necessary 
.Pascal. source ~or compilation each ti~e is. a s~bstantial task. 

. ' . 
9. Symbolic Debugging·and Development Utilities~ The ultimate life-, 

cycle cost of any s-oftware product often depends ·on the quality 
of the debugging and program development utilities available. 
The cost-effi~tent modification,· installation, and maintenance-of 
the REVS software requires a highly -developed set of such utili­
ties. Required are ussr-callable sYmbolic stack and heap dumps, 
procedure call trace-backs, and extensive ru·n~time -·error checking 
(e.g., bounds check, subscript checking). Also ne~ded are stand-
alone utilitie~ su.ch !lS· a nester prograni to. reformat the free­
format Pascal to reflect the program structure and a cross-refer­
ence program to _produce a c-oncor:_dance of_ program ·v·ari able usage. 
It is·expected that a si~nifit~nt part.of the REVS installation 
effort may be devoted. to enhancing existing· utilities and imple-
menting additiorial.ones. · · .. 

10. Character Set- The.character set used by REVS consists of the 
upper ca~e letters, digits, and a -s~~ll ·number of special charac­
ters. No lower case. lette-rs or ?pecial control characters are 
u~ed; The Pascal sy~tem, however, is assumed to·all6~ the under­
score and. dollar sign ~haracters in identifieis: ·Extensive use 
of the unde·rscore'1s'made·in REVS gene.rated simulators and post­
processors. The d'ollar sign _is used· in the names of· a few utility 
library'routines called t:iy REVS.· If the dollar sign was not 
available the names of the. routines woul_d have to change, but this 
would o·n ly require se 1 ecti ve recompi lati ori. . tack of the under­
score, however, -would be· unacceptable because,the underscore is 
used as a: connector- to permit meaningful multi-word RSL element, 
attribute, and relation names. ·; 
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Consider the following alternatives: 

o With Underscore: DAY OF WEEK 
o Without Underscore: DAYOFWEEk 

1 Short name, six characters as in FORTRAN: DYOFWK 

By making identifier names look like wor~s .or sequences o.f words that are 
meaningful, the clutter of mnemonics and run-together words is lessened, 
thereby increasing the readabi 1 i ty of the RSL. The hyphen could not be used, 
as in COBOL, b~c~use it is indistinguishable from the minus sign that must be 
used in REVS arithmetic operations, and would require analysis of the context 
in which it is used. 

Contemplated extensions to REVS, such as the "pretty print" option will 
require the 96 character ASCII character set. Thus, it is desirable that both 
the compiler and the STE'host support this character set. 

ll. External Files Processing- Standard Pascal recognizes both 
external and internal files. Exte~nal files are those files 
that are listed in the program statement at the beginning of 
the program. These files can exist prior to and after the 
execution of the Pascal program. Internal files are files that 
are used during the-execution and disappear when the Pascal pro­
gram terminates. REVS requires all.internal files to be treated 
as external files to retain them for'later job steps, even though 
they do not appear in the name list of the program statement. 
Treating the internal files in this fashion is a special option 
in the current Pascal compiler. Absence of this option would 
require changing the source code to place all internal file 
names in the program statement. 

2.2.6.2 Spec1al Pascal/bperating System Communication Requirements 

The Pascal environment must provide a means of communicating pertinent 
data to the 0/S during the execution of th~ Pascal program; This communica­
tion includes such things as dynamically assigning files, determining time of 
Qay and date and switches to alter the job control stream. 

·REVS requires that files be dynamically opened and closed during the 
Pascal program execution. Standard Pascal allows externally~defined files to 
be identified only at the beginning of:the Pascal program. This is done in 
the· Pascal language by file names on the program statement. REVS Pascal dyna­
mically assigns and deassigns files through twospecial routines. These rou­
tines are OPEN$ and CLOSE$. These routines associate a name with an external 
file, and areunique to the REVS Pascal environment. If the host system does 
not have this capacity, the means of attaching more than one add-file through 
the REVS control cards would not be possible. This would be a disadvantage 
in a "cardless" data ehtry system environment. 
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REVS Pascal informs the user of the time and date the program i~ run for 
documentation purposes. Standard Pascal does not have the time and date func­
tions. These must be available for -proper ·labeling of user·listings. 

During the execution of the REVS program, the· user may speci f.y severa 1 
additional processing steps to be completed after its' execution. These addi-. 
tional. processing steps will require additional control statements. These 
are for R-Net plots and simulati'ons. Although specific impiementatibn· is .. 
dependent upon the job control mechanism of the host system, the capabi'lity 
to modify the job ·control ·stream from· within the Pascal ·program must be ·· 
provided~ · 

2.2.6.3 FORTRAN Compiler Requirements 

R[VS 'incti~porat~s bver 10,000 lines of. FORTRAN. cod~ ~nd ~nt~~fa~~s with 
FORTRAN ~out~ne~ for CALCOMP plotting·and.inter~ctive.gr~phics. Thts 'cod~ is 
ANSI FORTRAN 66 with the following exceptions, cbnfined to the Data ~ase Con­
trol System (DBCS): 

• 

:' . 
Random File I/0 -. R~ndom F~le l/0 is re~uired'for file I/0 to 
roll irr and roll. out ~~t~ bas~ pa~es; Since the_ data base file 
is not a sequenti a 1 fi 1 e, but rahd,om a~ccess, the FORTRAN execution 
eri~irohmeht ~ust pro~ide for rando~ fil~ l/0. 

; .. ' "• . ·. .·· . . 

Word Mask ~nd Shift Operations:- Work mask and shift operations 
are used ·to allow bit manipulation on data words of the host 
machine so as to allow the packing of multiple data items into 
one com~uter word. Using these extensions, it is possible to 
"tune" a host computer·' s data base control system: through a 
trade-Gff· between CPU; ·memory and I/0 operations to attain an 
efficient REVS processing capability. This efficiency, however, 
can be attained only through handcrafting these modifications at 
each s ~ tE?~ Through judicious tunjng·,- ~he performance of· the ·.oscs 
has been increased up to lOO:l over the original University of 
Michigan issue. · 

2.2.6.4 CALCOMP FORTRAN-Plotting Requirements 

The REVS system utilizes the basic CALCOMP FORTRAN plot routines. These 
routines are used to generate the R NET plots from REVS·.· It·.is not necessary 
to pro~id~ C~LCOMP software, but th~ routines ·~u~t be functionally: equivalent 
and present a calling interface identical to the CALCOMP routi·nes: :PLOTS, 
PLOT, NUMBER, and SYMBOL The support software for Zeta Research plotters 
recently procur~d by RAOC·satisfies thiS requirement.·· 

2.2.6.5 ARC Graphics SystemSoftware · 

At the BMDATC Advanc~d ~esearch Center (ARC), the user applicati~n ~ro­
grams interface with the ARC Graphics· System thr.ough a library of forty-one 
FORTRAN subroutines stipporting seven functional groups: 
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• 
• 

• 

0 

• 

• 

• 

Console Initialization and Control ~ These subroutines permit 
access, control, and release of terminal sets (Group One). 

Keyboard Control and Data Interface - These subroutines cause 
the keyboa~ds to be enabled or disabled and allow input of 
alphanumenc data from terminal keyboards (Group Two). 

Trackball Control and Data Interface - These subroutines cause 
t~e trackballs to be enabled or disabled and allow input of 
d1splay cursor position from terminals (Group Three). 

Display Control - These subroutines communicate display screen 
position and color control information to the display generator 
( Group F o u r ) . 

Alphanumeric Information and. Displays - These subroutines permit 
the drawing and formatting of characters and symbols on terminal 
display screens (Group Five). . 

Graphic Displays.- These subroutines are used to generate the 
data needed to draw figures and construct graphical presentations 
on terminal display screens (Group Six). 

Supporting Utility Capabilities -These subroutines are special­
purpose capabilities that include interactive text editing, time 
delay control of application software, and video recording and 
recovery of screen displays (Group Seven). 

REVS currently makes calls to 24 of these routines (two in Group One, 
five in Group Two, six in Group Three, two in Group Four, three in Group Five, 
five in.Group Six, and one in Group Seven). These routines are specific to 
the ARC system, equipment, and operations philosophy (i.e., the software is 
not necessarily applicable outside the ARC environment). 

The best strategy to follow for STE use would be to maintai~ the same 
REVS FORTRAN interfaces where relevant, and to implement new FORTRAN routines 
that are functionally equivalent, but which are adapted to the particular STE 
equipment, operational environment, and needs. 

2.2.6.6 Memory Management Requirements 

The CDC installation of REVS minimizes primary memory requirements 
through use of memory overlays, and is currently divided into some.40 over-
1 ays. The REVS overlay sys tern requires that the overlay process be totally 
transparent to the source program. This means that nowhere within the source 
of REVS are there any calls to an overlay loader. The calling of code for an 
overlay must be entirely generated by the CDC segmented loader. To achieve 
the same results on a non-CDC system would require a similar overlay scheme. 
Any overlay scheme which required source code changes would be unacceptable. 
A virtual memory system is an alternative to overlays. 
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A virtual memory system is also an alternative to the current REVS 
method of paging in the data base :from disk. Preliminary experiments on the 
VAX ll /780 indicate that the native· vi rtua 1 memory system ·is more efficient 
than paging vi a the DBCS ... The memory management technique is, more criti ca i 
in l·i m.i ted core configurations,. and wi 11 have to be assessed for each candi­
date STE configuration relative to its other parameters. 

2.3 :PERFORMANCE AND CONFIGURATION ANALYSIS MODEL (PERCAM) 

PERCAM is a simulation syitem driven dir~ctly by Event Logic Tree (ELT) 
representations of systems. An ELT (see Paragraph 2.3.1) is a graph model 
repre~entation which functionally represents a system 1 s operational logic 
(sequence of events, time delays, and decision nodes). It was desi~ned speci­
fically to perform a range of analyses from quick turn-around cursory studies 

. to in-depth analysi? efforts. Within PERCAM, common system operations are 
stored as a set of components. Each ~omponent is a module o~ code (a Macro) 
that simulates a specific activity.· Any ELT that.is described in terms of 
these components can be processed by PERCAM to combine the component code into 
an executabl~ module (the engagement model). If a system cannot b~ adequately 
described by the existing components, additional ones can easily be added. 
This capabi 1 ity frees the user ft7om the programming deta i1 s usually associ a ted 
with simulation constructirin a~d allows. the. simulation to be constructed by 
the system analyst rather than an experienced pro~ra~~er; · 

User-defined environmental ~onditions (e.g., scenario, threat) and 
system performance characteristics (e.g., sensor detection characteristics) 

, can be input:to an Eng9gemE;nt Model which executes in a Monte Carlo· environ­
ment. · A post-processor summarizes and tabulates results in a user:..ori ent.ed 
format (tables, histograms, etc.). 

PERC AM is currently being utili zed to analyze a variety of sys teni types 
(from tactical .weapon systems to computer center op~rations) from a variety 

·-of standpoints -- from sys tern performanc;:e effectiveness to computer loading 
and message traffic. ·Consequently~ several component libraries exist· for . 
use depending on the nature of the ~roblem to be addr~ssed (~ee Figure 2-3). 
Currently, component libraries e~ist·to ~nalyie tactical systems from' a~ 
effectiveness standpoint utilizing both the FORTRAN. language as a base and 
the COMO simulation system as ·a base. Other component librarie~ ~xist to 
analyze system resource requireme~ts utilizing the TRW developed SAL~IM sim­
ul~tion language as a base. 

The PERCAM analysis process, shown in Figure 2-4 begins with definition 
of a system in terms of ELT and anaJysi s of key performance parameters. (Any 
components not adequately templated in the component library are also developed 
at this time.) Logic link specifications, corresponding to .the ELTs,and~ per­
formance data definitions are input to the PreproFessor (macro-proce~sor s imu­
lator builder) which selects and conditions components .from the library accord­
ing to the user input. Specific operational data values are defined to the 
simulation executive at run-time. 
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The user wi 11 typically execute a ser1 es of runs to examine the effects 
of varying fixed system parameters (feasibility and sensitivity analysis), or 
perform sets of r~onte Carlo runs to determine overall system behavior under 
non-deterministic conditions. The Post-Processor reduces and displays run 
outputs,~Jor manu a 1 analysis by the user. The bui 1 di ng-b 1 ock approach to s imu­
lator definition and construction also permits rapid evaluation of alternate 
syste~ structures and alternate operating rules. 

2.3.1 Event Logic Trees 

Event Logic Trees (ELTs) are structured graphical representations of the 
sequence of actions performed by a system in its operating environment. The 
ELT consists of a series of linked functional blocks that completely describe 
the operational paths the system may take to reach anY number of precisely 
defined termination points. Branching within the tree is controlled by vari­
ous decision nodes. An example ELT is shown in Figure 2-5. 

Each function is described to the level of detail necessary to represent 
system operation consistent with the objectives of the study. For example, 
during the initial phase of a system sensitivity analysis, many areas of the 
system may be only partially defined. The functional blocks representing 
those areas might, therefore, be defined with less complexity than other sub­
systems/areas for which more detailed operational characteristics exist. As 

, the· study progresses, more precise operation a 1 1 ogi c can easily be added with­
in the structure of the ELT. 

Associated with each functional element are performance models that de­
fine the characteristics of that segment of the tree. It is the performance 
model that predominately controls the fidelity of an ELT representation. For 
example, almost all weapon system models require the determination of probabil­
lty of kill once the defensive ordnance has intercepted the target. The user 
analyst can control and modify the fidelity of his model to vary the deter­
mination of Pk from a simple constant tG a complex set of curves that encom-. 
pass a large number of variables. Once the basic operational ELT structure 
has been baselined, it is possible to significantly increase (or decrease 
when desired) the overall modeling fidelity without time-consuming modifica­
tions to the logic flow. 

Since an Event Logic Tree is a visual representation of a sequence of 
actions, engineers and systems analysts can easily communicate their under­
standing of the sensitivity and irnpact of specific parameters on system per­
formance. In part, a preliminary assessment of the relative sensitivity of 
each function with respect to the overall performance figures of merit can 
often be made from visual inspection. First order assessments of this type 
are very useful as precursor analyses; however, manual analyses are usually 
too restricted and time.;..consuming to be used for a full-scale study of a 
number of different options. An automated simulation capability that builds 
a computer simulation directly from ELT models has, therefore, been developed 
to decrease the analysis timeline and provide an effective means for conduct­
ing studies that consider a large number of variables. 
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2.3.2 PERCAM Software 

PERCAM currently consists of four software elements: a Library Bu·ilder 
(LIBLD), a Component Library, a macro-processor simulator builder known as 
the Preprocessor (PREPRO), and a Post-Processor. Each of these elements is 
discussed below. 

2.3.2.1 Library Builder (LIBLD) 

The LIBLD module builds a Component Library of macro templates which is 
used as one of the two input sets to the Preprocessor. LIBLD also produces 
printout to describe the Component Library to the user. 

A Component Library is created when LlBLD processes a file containing 
LIBLD Input card image input data. This LIBLD Input describes components 
which are to be included in the Component Library. Components can (and gen­
erally will) contain delimited substitution symbols. ·These are symbols for 
~hich particular text o~ integers can be.substituted when the component is· 
particularized by the Preprocessor. Examples of the three types are coinoonent 
name lines, text lines containing substitution symbols and text lines wh~ch 
contain no substitution symbols. The LIBLD Input corresponding to a single 
component is cornposed of one component name 1 i ne fo 11 owed by the text 1 i nes 
of the c6mponent. The text line c~rd images which follow the name line of 
the component may be i nterm'i xed between text 1 i nes which do and text 1 i nes 
which do not contain substitution symbols. 

2.3.2.2 Component Library 

The heart of the PER CAM sys tern is the PER CAM component 1 i bra ry, which 
provides the templates from which the FORTRAN simulator programs are built. 
This FORTRAN-based library is flexible, allowing the user of PERCAM to change 
the components and add new components as dictated by his needs for simulation. 
The components in the PERCAM library are macro-templates .. These templates 
are FORTRAN statem~nts with macro-processor·control characters embedded in 
them. As the macro-processor itself is very simple, only a knowledge of 
FORTRAN is required to make extensions and changes to the components. Once 
the source code of the components to be put into the macro-library is assem­
bled, it is then pre-processed by the component Library Builder into a com­
pact form for efficient access of the modules and quick generation of the 
simulation program. 

The components are intentionallY small. and generalized to maximize their 
utility for a wide variety of problems. This decreases the operational effi­
ciency of a simulator, but substantial.ly reduces its construction time, 
yielding a net time saving tb produce output. In practice, the number of 
basic components for a general purpose library is small. Within. a specific 
technology area, users accumulate more specialized components and problem­
particular components over time. Examples of typical components are given 
in the following subparagraphs. 

ADCM- Attack~r Defender Control Model. The attacker/defender model 
component contains the simulation executi~~' initialization software, and 
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some of the general support software. Preprocessor input~ for th~ ~DCM com­
ponent can be divided into several segments: 

t Dynamic merilory f·i l e defi ni ti on 

g ELT declar~tion 

e System performance input specification 
. e Threat definition 

t Program specification. 
. ~ . ,. . ~ 

DC - Decision Component.· The Dec~sion Component-transfers control to 
either of two user-specified elements depending on whether the independent 
variable (P) is 'less than or.·greater·than a .random number, RN, which is in 
the_ range 0. to 1. '- · · 

DPLD ~ Data Processing Load Speci.fication Component. 
records data process i-rig through put, memory, and ·data rate 

·. output fi 1 e. for use-_ in· post-process ·j ng.' The requi-rements 
or activities -can be specified in one DPLD component. 

Th~ DPL~ component 
requi reinehts- on an 
fo~ up to ten states 

'. . 

.. 
-- EC- Evaluation-Component. The Evaluation Component-evaluates a user~ 

specified dependent variable. Evaluation may be· carried-out in two different 
ways. ·In· the first, the· dependent variable, D, is ·evaluated as a function of 
up to four independent variables, VI-l, ... ,VI4~ An interpolation is· performed 
using tables supplied by the user. The second evaluation format assigns a 
value, EXPR, to the user-specified dependent variable. EXPR may be·a rear. 
constant or a mathematical expression. Both formats may be ·used simultane­
ous.ly or independently_. The Eva 1 uation Component·. pro vi des the capabi li.ty of 
evaluating ·a dependent variable as a function of any or several;of;:the pro-:· 
g:·am-supplied independent variables:. Dependent variables, once evaluated~·: 
may be used .. in other components, e:g., a variable maY. be input to a·Decision 
Component to :·dete:rmine which· of two.branches of the ~LT to follow~ 

ELT ~ ELT Definition Component. The. ELT Component must-be used t6 ini~ 
tiate specification of· each ELT to be defined in- the model. -.Preprocessor····· 
inputs allow the. user to define data structures which are local·to this ELT. · 
The global data. structures defined in ~he ADCM component are automatically 
made -:~vai 1 able. - Preprocessor inputs- optionally· retrieve- the· pointer to the 
active system (attacker or defender) from the event notice and· store it. in 
a local variable for use in the ELT. · 

END- E~d Component .. The END component is used to indicate--th~ eod.of. 
the in.itializat.ion processing (INITIAL} after the ADCM component and to _indi­
cate the end of other _subroutines cons tructed .. uti 1 i zing the component library . 

.... ,. 

ENDELT- ELT End Component~ The_ ENDELT com~onent is-used to indicate 
the end of a user-defined .ELT; Processing on event notice is .terminated and-
the notice is purged from the system. · 

EVNT - Event Logging. Component·, _The EVNl component is. inc 1 uded in the 
ELT at points where data. is to be recorded so that a time history of signifi-: 
cant events can be analyzed with the Post-processor. This component causes 
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data to be written on the Event Tape (TAPE?). Information includes the 
replicati~n number, game time, event number, event type, active combat unit; 
and event-related data defined by the user. 

t1ATLB - Math Library Component. This component contains a few commonly 
used subroutines supporting vector and matrix operation. Included are matrix 
multiplication, vector cross product, vector prod~ct, vector magnitude, vec­
tor subtraction, matrix transpose. These. routines can be used directly in 
the FTC/INLINE code. There are no Preprocessor inputs (other than component 
name) for this component. 

TC- Time Component. In addition to allowing one ELT to-schedule another 
(or itself at some future time), provisions have been made with the TC compo­
nent to allow time delays to occur within an ELT. Processing commences with 
a designated component w-ithin· the EL T after the de 1 ay has occurred. Specified 
data (local variables) can be saved for use after the delay has occurred. Any 
data local to the ELT (i.e., counters) and not designated to be saved are sub­
ject to change during the delay period. 

FTC/INLINE - FORTRAN Components. The user has two means to augment the 
component 1 i bra ry with FORTRAN code within a model ; the FTC component and a 
pseudo component INLINE. 

The FORTRAN Component (FTC) enables the user to construct a specialized 
code with up to twenty FORTRAN statements -- each of which is not to exceed 
20 lines -- ten of which can have statement numbers. These statements can be 
executable or format statements. 

The pseudo cornpo~ent INLINE allows FORTRAN code. (iri FORTRAN format) to 
be input in the Preprocessor input stream with the other components. The 
code input under INLINE is reproduced in the generated code at the pofnt in 
the EL T mode-l where it was input. 

The FTC and INLINE.components are provided to allow the user to address 
needs not anticipated when the other types of components were conceived. 

·. 2.3.2.3 PERCAM Preprocessor 

The PERCAM Preprocessor assembles the ELT models using components from 
a Component Library and integrates them with an Engagement Model simulation 
executive (also contained in the Component Library). 

The Preprocessor program uses the Preprocessor input as a guide for 
generating FORTRAN code which functionally models the attacker and defender. 
Most of the performance data utilized by PERCAr1 is ·input through the Pre­
processor. 

With the exception of the $componentname input, which acts as an iden­
tifier and causes a particular component type to be evoked from the Component 
Library, all other inputs cause substitution of a character or character 
string into the component code replacing the Preprocessor input symbol. If 
any one of the Preprocessor input symbols in a line of component data is not 
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specified Jn the user input to that component, the entire line of code is 
omttted from the generated code. 

2.3.2.4 PERCAM Post-Processor 

The PERCAM Post.-.processor was developed to provide high visibility 
information on the results and logic processes of PERCAM simulations: This 
capability has a variety of uses for the analyst. During the test case 
checkout and preliminary analysis, the event list (which shows the logic 
followed and decision parameters for each attacker and defender) :and the. 
scenario summary (which di sp 1 ays the s imul ator-recei ved defender and target 
locations and attacker·paths) may be particularly useful. In the comparative 
analysis phase, the time/range summary (which gives minimum, maximum, and 
average times for specified defender events) the weapon release summary, and 

.. the deci s ton component path execution frequency di sp 1 ay (which gives branching 
statistics) all provide useful, pre-processed data.- For results presentation 
purposes, in addition to the. already mentioned displays, there are also the 
kill probability bar chart, the cost data summary, and a CALCOMP scenario 
plot . 

.... !. 

Since -the Post~ptocessor was developed for use with PERCAM, the us~r 
input format was constructed to appear as similar as possible to the PERCAM 
simulator/construction input. Displays are modular and independent of each 
other and may .be requested itJ any order. Each display request is begun with 
a keyword, preceded by·a $, as in PERCAM tomponent specification, and other 
·data fo11ows ·in a fre·e-field format. 

The data flow from the user and simulator through the Post-proceS?9r is 
summari·zed in Figure 2-6. -·Most Post-processor displays are derived from an 
event list· which ·is output froin the PERCAM' s·irnulation. ·Each component in the 
component 1 i bra ry contains a section of code which writes current data about · 
the component, when executed, on a file (TAPES). This code i~ nominally in­
active, but may be activated by the inclusion of a control variable in the 
com~onent specifitation. Each=record written ·from·an executing component is 
ca 11 ed ·an 'event 1 

• A 1 so saved are the simulator input data and attacker- 1 a­
cation time histories. 

The modular construction of the Post-processor ailows easy addition of 
new displays .. The additionof a new display would nominally involve only 
the addition of the new keyword to the 1 a 11 owab 1 e keyword 1 1 is t, a ca 11 to 
the new subroutine in PROGRAM MAIN·, and the inclusion of the new subroutine, 
or subroutines, in the program library. 

2.3;2.5 Future Enhancements 

A color graphics display capability was developed on a recent PERCAM· 
project for use in conjunction with the Post-p~ocessor. This package is 
installed at the Army BMDATC Advanced Research Center (ARC) in Huntsville, 
Al~bama, and uses the same ARC Graphics System software that supports REVS. 
At present, this capability is not formally integrated into-the PERCAM system 
because it is tailored to the ARC facilities. It could be provided for an . 
STE environment since a facility suitable for REVS color graphics would meet 
PERCAr~ requirements. 
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2.3.3 Current Installations 

The PERCAM software was originally implemented on the CDC 7600 and has 
been used on a variety of CDC 6600 and Cyber series systems. It has also 
been made operational on both DEC VAX ll/780 and UNIVAC 1100 series computers. 
It is easily transportable to any computer meeting the software environment 
requirements of th~ ~ext paragraph. 

2.3.4 PERCAM ~oft~are Environment R~quir~ments 

~hiii ~tRtAM is-often used in conjunction with specialized simulation 
languages (e:g., COMO, SALSIM) we will not require support of those languages 
for a basic ~apability. All that is needed to achieve a PERCAM environment 
is a suitab-le extendeg FORTRAN IV (FORTRAN 66) compiler and specific system 
utilities as itemi,zed .in the following subparagraphs. Future color graphics 
requirements can be_ met within the REVS graphics requirements. 

2.3.4.1 Required FORTRAN Lartg~age Extenitons 

e Additional characters· for the FORTRAN Character Set are required 
as· special ~char~cters to the Pr~processor. These are used to 
-inform the Preprocessor of pa rallieter subs ti tuti on names and of 
literal character stri-ngs .. 

·s 

' •' . 

- Single quote ( 1
) in ~ddition:to theFORTRAWdouble quote("). 

The Less 'than character "f<) .. 

'The Greater·thart character(~). 

N arne 11 s t t /0. Name 1 is t- I /0 is a n·ori -s t2mda rd : FCiRTRAN feature. 
This ·non-standard extension may not be th·e same on,·different 
host· systems. Namelist I/Ois required for the convenience of 

. changing 1dentifier .names s·irnply by specifying the name and the 
value :to be replaced. ·This. is used very heavily in PERCAM for 
revising initial cond-itions, probabilities, and othe:r types 
of· operations. 

2.3.4.2 _Required System Utilities· 

PERCAM requires the following system utilities, in addition to the 
FORTRAN compiling-system: 

e Sort/Merge. A Sort/Merge package for the host system must be 
callable by FORTRAN. This capability is required for the sort­
ing done in building the table data summaries of the Post­
processor. 

t CALCOMP 1 Plotting. The CALCOMP basic ~lot routines or equivalent 
are reqtli red for PER CAM outputs .. 
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• Multiple Job Sequence. The job control language of the host 
system must provide for multiple job step execution. A typical 
PERCAM run executes in the following order in one job stream. 

Library Precess or (LIBLD) 
Preprocessor (PREPRO) 
FORTRAN Compiler 
Loader 
FORTRAN Simulation 
Execution 

- Post-Processor. 

Thus, multi-phase processing must be provided by the host system. 
The user must be able to execute the sequence in full or in incre­
ments during any one run. 

• Check-Point Restart. For very large scenarios involving lengthy 
run times it is desirable to save data at intermediate check­
points sufficient for the run to be restarted at the last· check­
point prior to host system failure. This ensures that lengthy 
rerun$ would be unnecessary. While this feature is useful for 
theater-wide air defense modeling, we do not envision it as 
necessary for the near-term STE unless the host slowdown factor 
relative to current installations is large. 

2. 4 AUTOIDEF* 

AUTOIDEF is an interactive graphics tool which provides a means of 
designing in the ICAM Definition Method (IDEF). AUTOIDEF is b~ing developed 
by Boeing Computer Services Company (BCS) under contract to SofTech, Inc. 

AUTOIDEF is designed to provide users with a computer-supported means of 
graphically representing the activities, data constraints, and dependencies 
in a manufacturing architecture. Phase 1 of the three-phase AUTOIDEF project 
provides for the design of IDEF diagram construction and limited editing . 
according to.a use.r's set of specific.ations, and includes the capability of. 
viewing or plotting any IDEF diagram following its construction. AUTOIDEF 
users will be able to· save diagrams and entire data bases, and recall them at 
a later.time. The Build 1 version of AUTOIDEF also enables the user to per­
form the administrative functions necessary to establish new projects and to 
specify new authors and users. Bui 1 d 2 wi 11 result in a complete di agrarn 
input, editing, and display capability, as well as model creation and display 
capabilities and project management support. Build 3 will yield a set of 
model analysis tools, information extraction tools, and alternate format 
presentation tools. 

*Note: Information and illustrations in these sections have been excerpted 
and adapted from ICAM project documentation provided in part by Boeing 
Computer Services, Tukwilla, Washington .. 
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It should further be understood that IDEF is an evolving methodology. 
It is· expected that some revision will be made, and that the corresponding 
revisions to. the too:ls will be made prior to ·Build 3. · 

Figure 2-7 illustrates a typical IDEF diagram. The-allowable diagram 
structures and re 1 ati onshi ps dictate a graphics mode of diagram definition. 
Since multiple arcs may originate or terminate at box boundaries, and arcs 
may fork or join in complex ways, specification of a diagram requires de­
tailed description of graphic coordinates. Entry of descriptions via input 
cards would be either tedious ~nd impractical, or would constrain the allow­
able structure to a limited set. 

2.4.1 AUTOIDEF Software 

The structure of AUTOIDEF Build 1 ~oftware consists of eleven distinct 
functional ~omponents as shown in Figufe .2-8. The implemented software has 

·been modularized to enforce these functional boundaries. The overall archi­
tecture is expected to remain constant in Build 2. The following subpara­
graphs provide functional descriptions of each comprinent. 

2.4!1:1 AUTOiDEF:Executiv~ 

The AUTOIDEF ·Executive component controls the entire system. It is 
responsible for scheduling and invoking the Administrative Functions and 
Diagram·Executive/User Interface co~ponents. Depending on the user 1 s need~ 
the Executive will invoke one of·these subordinate components and, for the 
Diagram Executive, will also initialize the use of a graphics ·terminal. When 
i nterfcici ng with the AUTO I DEF Executive, the user can perform administrative 
functions, such as specifying authors and additional users, using any key-
board. terminal. · 

· · The AUTOIDEF Executive determines the options available to a giveri user. 
It monitors th~·use of·IDEF diagrams to ensure that only those diagrams for 
which the user is an author or specified user are accessible. · 

2.4.1.2 Admini~trati~e Functions 

An AUTOIDEF user has a choice of several functions through the Adminis­
trative Functions component, consistent with his access authorization.··. For 
Bui.ld l, these administrative functions are: create a new author, specify 
additional users, and delete a diagram. According to the IDEF conc·eptual 
schema~ entities are either created or del~ted from ~he data base, depending 
upon the functton. · 

·2.4.1.3 Diagram Executive/User Interface 

·A user ent~rs the Dia~ram Executive/User Intierface component to display, 
p 1 ot, create, or edit an I DEF diagram. The user is presented with options vi a 
a menu selection interface and interacts with AUTOIDEF by making a choice. 
The Diagram Executive/User Interface component interfaces with a graphics 
terminal once initialization is performed by the AUTOIDEF Executive. The 
component then interfaces with the Diagram Transfer and Diagram Manipulation 
components to perform the activity se 1 ected by the user. The Bui 1 d 1 AUTO I DEF 
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Diagram Executive/User Interface component is based upon the menu structure 
of the AIDs!staging system. 

2.4. 1.4 Diagram Manipulation 

The Diagram Manipulation component performs the graphical· manipulation 
of an IDEFdiagram. The manipulation routines are of three types: .diagram 
construction> diagram display, and plot diagram. Diagram construction allows 
a user to manipulate either an existing or a new diagram by perfotTiing such 
functions as add N boxes> add an arrow segment, add an ICAM code, or add an 
arrow segment label. Diagram display arid plot diagram generate either a 

. screen display or a hardcopy plot of an IDEF diagram. The Diagram Manipula.­
tion component is invoked by the Diagram Executive/User Interface component 
and in turn must interface with both the Graphics Display and Graphics Data. 
Base components. 

2.4~1.5 Diag~am Transfers 

Jhe AUTOIDEF Diagram Transfer component controls the transfer of infonna­
tion betw~en the graphics data base and the IDEF data base. The t~ansfer pro­
cess is based on the IDEF conceptual schema developed during preliminary de­
sign of AUTOIDEF. IDEF diagram infonnation is passed from the IDEF data base 
to the graphics data base when a user desires to perform diagram manipulation. 
For a new diagram, only author and project infonnation is transferred; for 
editing an existing diagram, all pertinent information concerning the dia­
gram's related entities is transferred to .the graphics data base. Once a 
diagram has been displayed, plotted, created, or edited in the graphics of 
AUTOIDEF, the. information is returned to the IDEF data base by the Diagram 
Transfer component. 

The Diagram Transfer interfaces with both the IDEF and Graphics Data· 
Base components to accomplish the transfer process. The Diagram Manipul~tion 

-component is- responsible for invoking the Diagram Transfer component mov·ing 
of the diagram information. · · 

2.4.1.6 IDEF Data Base 

The IDEF Data Base component has two .levels of capabilities. The first­
level d~ta base routines make use of t~e IDEF conceptual schema designed 
during the preliminary investigation. The conceptual schema. is then trans­
lated into an implementation schema by both Level 1 and Level 2 data base 
routines. The IDEF data base implementation schema is based upon a CODASYL 
structure used by ADBMS**> the current IDEF DBMS. The logical data base · 
structure maintained by ADBMS is compatible with the e~tities, attributes, 

*AIDS is an interactive graphics-based system developed at Battelle~Columbus 
to help in the preliminary de~ign of a~rcraft. Th~ User Interface, Graphics, 
and Data Base routines are be1ng used 1n support of AUTOIDEF. . 

**ADBMS means "A Data Base Management System". It was developed by the Univer­
sity of Michigan ISDOS project, based on DBTG7l CODASYL model. The current 
IDEF DBMS uses ADBMS Version 3. The ~EVS DBMS was adapted from ADBMS Ver-
sian 2. 
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and relations that support·the IDEF methbdology. The IDEF data base implemen­
tation schema is used by ADBMS to perform the physical processing necessary to 

·automate the IDEF methodology. Both Levels 1 and 2 routines are designed with 
generalized interfaces~ Level 1 interfaces with both the Diagram·Transfer and 
the Administrative function components through an interface based on the con­
ceptual schema. Level 2 is then used to format arid control ADBMS routines in 
order to accomplish conceptual requests based upon the current implementation 
schema •. 

2;4.1-.7 IDEF Data Base ManagementSystem 

ADBMS,- the current IDEF DBMS, presents a generalized data base structure 
based· on a· CODASYL :schema. ·The CODASYL schema is trans 1 a ted to meet the needs 
of the IDEF methodology resulting in the IDEF data base implementation schema. 
The implementation schema is then used by the IDEF data base modules to re­
spond to user requests from other AUTOIDEF components. To the DBMS, the im­
plementation schema represents the logical ~tructure of the data. This 16gi­
cal structure is used to pe·rform the actual physical access of data. The 
·phy~ical structure of the data is unimportant to any of the AUTOIDEF compo­
nents other th~n the IDEF DBMS co~ponent. 

2. 4·. l. 8 . Gr~ph i cs Data Base· 

The-Graphics Data Base component is si-milar to the IDEF Data Base compo­
nent. ·It makes use of both a conceptual and an implementation schema by 
sepa~ating the modul~ into two levels. The conceptual schema is an extraction 
of the IDEF conceptual -schema -and represents ·only the entities related to a 
given dia.gram. The implementation schema is· based upon the logical structure 
maintained by the AIDS-Staging system rather than ADBMS in the IDEF data base 
implementation schema. Again, a transformation process is responsible for 
interpreting the conceptual schema to the imple~entation schema. The imple-. 
mentation schema is then used by the Graphics DBMS to perform· the actual 
phjSical accessing of the data. The Graphics Data Base component interfaces 
directly with the graphics DBMS through the implementation schema and also 
interfaces with the Diagram Transfer component and Di agr.am Mani pul ati on 
component by using the conceptual schema. 

2.4.i.9 Graphits ~BMS 

·. The A1DS-$tagirig ~ystem i~·the current ~raphics DBMS in AUTOIDEF. AIDS 
us~s a leveled logfcal data base structure ·that is ·tailored to the IDEF metho­
dology to ·become the implementation schema. The Graphics DBMS is responsible 
for m~nipulating this implementation schema to physically access the data 
relevant to an IDEF diagram. Only the Graphics DBMS needs to hav~ knowledge 
of the algorithms and structures necessary to perform the actual physical 
accessing. The Graphics DBMS interfaces only with the Graphics Data Base· 
comp6~ent through the Graphics implementation schema. 
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2.4. l. 10 Graphics Display 

The Graphics Display component has three major functional capabilities: 
generalized entity descriptions, verification and monitoring of the AUTOIDEF 
screen display, and interfacing with the Diagram Manipulation componerit and 
the Graphics Package. The entity description function is used by AUTOIDEF 
to make the display of an IDEF diagram more efficient. Several data it~ms 
are maintained to describe th~ dimensions of boxes, the IDEF form, and loca­
tions of identification information fields. The Graphics Display component 
also verifies and monitors the current contents of the graphics screen so 
that the construction of IDEF diagrams is valid. The screen verification 
process ensures that arrows do not eros~ boxes, boxes do not overlap other 
boxes, and arrow segments are gapped when they cross labels. The Graphics 
Display component interfaces with both the Diagram Manipulation and the Gra­
phics Package components. The interface to the Diagram Manipulation component 
is structured around the following subfunctions: open a display segment, 
display text or lines, and close the display segment. The low-level interface 
performs the same functions but also includes a mapping to·core graphics. 

2.4.1~11 Graphics Package 

The major pufpose of the graphics package is to maintain a graphics dis­
play file that represents an IDEF diagram. The graphics package, AIDS-Inter­
tek, is responsible for creating,_ deleting and ma-intaining the display file. 
The AUTOIDEF graphics package interface is mapp~d to meet core graphics stan­
dards, which can be used on many graphics packages. The graphics display file 

·is used both in displaying an IDEF diagram and in plotting a diagram. The 
only difference in the functions is theoutput device the display file is 
directed to: graphics tenninal or hardcopy plotter. 

2.4.2 Current Installations 

The AUTO I DEF sys tern is currently installed on the CDC CYBERNET system 
under the NOS operating system. Users throughout the country can access 
AUTOIDEF through local CYBERNET concentrators. 

Eventual rehosting Df the software is probable when the ICAM project 
progresses to the point of fielding a completely integrated set of tools. 
With this in mind,.AUTOIDEF has been designed for themaximum·degree of port­
ability possible, consistent with its detailed capability requirements and 
the requirement to initially host it on CDC CYBERNET equipment. 

2.4.3 AUTOIDEF Software Environment Requirements 

The subparagraphs bel ow summarize software environment requirements as 
identified from currently available AUTOIDEF documentation. Futur~ builds of 
AUTOIDEF are not believed to involve additiona.l requirements. 
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2.4.3. l FORTRAN Language Extensions 

---The ·AuTbiDEF software and its externally~furni~hed suppo~tin~ packages 
are stated to be. i-n ·conformance With the ANSI FORTRAN 77 standard except for 

'certain-identified ·deviations~ most of which seem related ·to the CDC envi-ron­
ment and are well confined ·to specific ·submoaules.: The ohly-majar·deviati'on 
involves use of MASK, SHIFT, ENCODE, an·d DECODE 'functions. : These must be 
provided in the STE environment to avoid rework of AUTO I DEF. ; 

! 'I 

Irr ~dditiori to ~se of the functions ·aboVe, AUTOIDEF may 'de~iate frofu the 
older~NSI:FORTRAN 66 standard in the following~ · 

·· ... 

e O~erand conflitts in ·arithm~~it statemerits~· · 
oi, Use .of l.i.ter.als instead. of Holi-~rith data.'. 

. . ' . . ., . .. 

- -, Use :of ENTRY statements. · 

-~ . . 

Althou~h the· DBMS from the University of Michigan 'is ··claimed 'to be in··· 
ANSI FORTRAN, it supports random access I/0 which is a deviation from the 
FORTRAN 66 standard (and is specified in the FORTRAN 77·standard in a~manner 
that deviates from most known implementations). A candidate STE host must 
sUpport FORTRAN random accesi I;o; Th~ imple~entation:ori ~ath candid~te 
sys'tem must -be evaluated to determine cornpat·i bil ity as' there'·a re often undocu­
mented variations between machines~-

. 2.4. 3. 2 -Assembly Lang_uages 

·The AUTOIDEF-documentati~n ·states that·one foutine ;~:the AIDS exe­
cutive is written in COMPASS •(CDC Assembly language). _This routin'e wi-ll -have 
to be rewritten in either hast assembly language or HOL fat· non-CDC machines. 

; :... •' 

2.4.3.3 Character Set 

·Due to limitations of the'CDC NOS operating system, AUTOIDEP users are' 
currently; limited to the ASCII 64. character set''(upper·case). However, the 
original AUTOIDEF requirements state that it is desirable that the full 96 
character:ASCli ch~ratter ~et be ~v~ilable. The STE h~st sh6uld provide the 
96 cha·racter set, but the· 64 character set would· be· acceptable if other con-
siderations favor selection 6f a parti~ular mach~ne~ · -

2.4.3.4 Memory Management'· 

As w~th REVS, in the CDC environment AUTOIDEF~uses i~~:cDC. segmented·· 
loader to' minimize the use of main memory during execution. AUTOIDEF is 
design_ed to allow segments 'rio larger than 25676 60-bit Words each:(60K.octal). 
These segments are overlaid as necessary during program execution.-_ Any over­
lay generation mechanism u'sed by the STE -hos·t must be transparent to the 
application program. A virtual memory system is an acceptable alternative 
to segmentation and overlays. 

I , • 
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2.4.3.5 File Access 

The original AUTOIDEF requirements specified that read/write access to 
the data base be provided for multiple users simultaneously. The CDC NOS 
operating system does not support access by more than one user at a time. 
To work around this constraint, the designers chose to s~gment the data base 
among multiple physical files to provide data base access for multiple users . 

. Each user may access only one file for read/write operations. No two users 
can access the same file concurrently for write operations. To support this 
mechanism, the STE host must allow AUTOIDEF to dynamically attach, open, close, 
and release files during program execution, in response to user command. 

2.4.3.6 Alternate Graphics Packages. 

BCS states that other graphics software packages may be substituted for 
the AI DS-lntertek FORTRAN package currently used if t.hey pro vi de the functions 
"provided in the Core graphics mapping" (defined in an appendix not included 
with our documentation). We presume this implies compatibility with the Core 
System, a graphics standard developed by the ACM/SIGGRAPH Graphics Standards 
Planning Committee (see ACM Computing Surveys, Volume 10, No. 4, December 1978 
for a discussion of the Core System). · 

2.5 GENERAL SOFTWARE ENVIRONMENT REQUIREMENTS 

This paragraph addresses software ~nvironment capabilities needed for the 
STE independent of the specific too 1 s. These features are characteristic of 
any effective developmerit environment. 

2.5.1 Source Library Control Requirements 

Because of the size and complexity of the REVS and AUTOIDEF systems, 
some means of source library control must be provided. An operating source 
library system must: 

0 Logically group source modules. 
• Provide a ·method of sou.rce updating to include an audit traiL· 
• Provide a means for maintaining different software versions for 

different site variations. 

REVS currently uses a source library system on the CDC. Unfortunately, the 
CDC UPDATE program is not machine-independent, it is applicable only for CDC 
sites. The CDC UPDATE provides a proper audit trail so that previous addi­
tions can be identified, and updates are accomplished in a non-destructive 
mode. Finally, the CDC UPDATE system logically groups the source· modules of 
the application system. Two approaches for source library control are pos­
sible. Either the host computer 1 s library systerv can be used or a "portable" 
system (i.e., dependent only on character set standards, such as ASCII) can 
be used. 
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2.5.2 Data Entry Requirements 

The STE must effectively support data fil~ creation, editing, update, 
and. deletion operations in both batch and on-line modes. This support must 
be ihdep~nden~ of the.hosted tools. The separate file~ must be.mergeable and 
attachable to execution jobs. 

. . 
2.5.3 Dn-Line Response Time Support. 

Jh~ STE host operat~ng:sys~em must be capable of supporting·a 1 to 4 
second .reaction time to localon-line jobs. This ·means direct or indirect 

·acknowledgement of a r~ques t ·from an on-1 i ne terminal , and not necessarily 
complet"ipnof the request~d action. (This re.action t·ime is generally consi­
dered adequate for interactive systems [8]). This .response time must be· 
supported in. a multi-user environment (up to six, but nominally two or three 
STE users).~_ 

., 

2.5.4 Communications SUpport 
. . 

. Tbe. STE systems softwar·e must be capable of servicing up to. six communi-
. cation lines from either local or remote terminals at transmission· rates u'p. to 

at least 4800 baud ( 9600 baud preferred). 
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3. 0 HARDHARE RESOURCE REQUIREt~ENTS 

·The paragraphs of this section discuss the hardware resources necessary 
to support REVS, PERCAM, and AUTOIDEFA Of the three, REVS and AUTOIDEF 
appear to set the pacing requirements for an STE facility. The needs of 
PERCAM are easily met within this framework. In the final paragraph of 
this section, we discuss general issues in STE hardware selection. 

3.1 REVS RESOURCE REQUIREMENTS 

REVS was originally developed for the TI-ASC and rehosted on the CDC 
7600. Subsequent improvements in performance have enabled practi ca 1 install a­
tions on slower CDC Cyber 170 series machines. Currently, REVS is being 
rehosted on a yet slower machine, the DEC VAX ll/780. This paragraph de­
scribes REVS resource requirements for the STE environment based on past 
and current experience~ · 

3. 1 . 1 . CPU Speed 

The basic CPU speed of a candidate STE configuration is only one aspect 
of potentia 1 REVS performance, to be considered concurrently with primary 
memory. size, I/0 transfer efficiency, total cos_t, and user demand. There-: 
fore, we will set no specific CPU speed requirement, but will discuss REVS 
performance in terms of 11 Slowdown 11 relative to current installations. 

. . 

The fastest version of REVS is on the CDC 7600 at the BMDATC ARC. Most 
REVS runs use less than 30 CPU seconds on this machine, with 8 to 20 seconds 
a typical value for experimental exercises of the type probably prevalent 
at the STE during the_ R&D period. 

To explore the
1

maximum relative slowdown value, however, we should 
consider the longest runs that may be required at the STE. One such run 
is the creation of the REVS load module itself, during the installation 
phase (see Table 4.1 in the next section). This is the second longest 
single run in the installation phase, and uses about 120 CPU seconds on 
the CDC 7600. 

The longest run in the installation phase is a test ~ase that ~ses 
192 CPU seconds. This case involves the creation and 1isting.6f a complete 
data base for an. air defense system. It is a realistic ~epresentation of 
a 11 large scale 11 software requirements engineering problem and uses the 
maximum LC~1 allowance at the ARC.' A larger data base at the ARC would 
require paging from disk~ Few REVS data bases will reach this size. ·Al­
though not mandatory, any data bases that exceed this size waul d generally 
be partitioned into smaller data bases for division of labor and management 
resources. Of the 192 CPU seconds, 131 were required to create the data 
base from card images, and 55 seconds.were required to list it. The remaining 
six seconds were for REVS and system setup and termination activity. The 
run produced nearly ·24,000 lines of output, and used over 10,000 card images 
for input. 



The same test cas~ req~ired l064.setonds to· execute on the TRW Time 
Sharing System (TSS) Cyber 174 configuration. The data base creation (trans­
lation) time was roughly 759 CP seconds while the listing time was approxi­
mately .305 CP.seconds., This is a: slowdown of-about 5.5:1 rel·ative to the 
i600.. ,. ' . . . : . . ., 

:.-·. . . . ' 

An additional order: of magnitude slowdown (i.e., 55:1 re.lative' to·'·the.·· 
7600) would mean that· this run would execute: in about thr.ee .hours:· :·Produc"'· 
tion of a REVS load module would take about 110 minutes. Execution of the 
REVS verification test cases waul d take about four :'hou.rs ·and~ 40· minutes. · ·· 
Most typical REVS runs would be in the seven to eighteen minute range. For 
future STE candidate evaluation purposes, a 55:l slowdown. would seem· to be 

... a maximum-outer··limit, but only-for an ST~-deditated-·faoili.ty~ The cenfra..l· 
issues:would be cost and the ability t6 meet overall-dailY·heed~ Within:this 
limit. : ·· 

. ,., '.·: . . 

Certainly in a shared facility, such as an existing. ARPANET hade,._ a 5S: 1 
ratio would be unacceptable as it would deny the node to other users. Here, 
ratios in the range of 5:1 to 12:1 would be more practical, subjec~ to avail-
ability considerations. - -

3. l. 2 Primary Storage 

, :The 11 Smallest 11 installation of REVS to .date has been on. the. 11 B'':·machine 
at the Nava.l ·Air··Dev.elopment Center (NADC). This configuration is-considered 
to be very limited in performance and does not include interactive graphics. 
This yers ion reqiJi red 1300008 CM (centra 1 memory)· 60-;bit words, to· exec.ute 

witf·(!n ad,diti ona:l 1440008 ltJQrds .·of .. tcs (Extend~d ,Cor_e Stor~ge. ;_~·. esse'~t_i al ,ly 

fast disk). ·'If .we were to consider all: of· this ·to be· pr-imary mema·ry, we.'can 
assume that 0.8 Mbytes would afford a very limited REVS configuration that 
would'·be totally unacceptable.with.CPUs. significantly slower than. CDCCyber 
l75.'s. The .configuration on the NADC "C" machine is equivalent to·l:45 Mbytes 
and is··considered a 11 good'' configur-ation •. The best:configuration is· at the 
BMDATC ARC; ·It is•,equi'valent tb 1.5 Mnytes, but requ.ires less -I/0 activity 
and is more effiCie-nt because up to·l28. Kwords ("-' 1 Mbyte} of user·.data base 
is stored in large Core Memory (LCM)· which is considerably faster· than:ECS .. 
All of these versions utilize code overlays to minimize the a~ount of REVS 
software in·core. If we 11 Unrolled 11 the code; for instance·toal-lowmulti­
use-Y'. reentrant .access, and rna i rita i ned it in: primary memory, about l. 5 ~lbytes 
would be .needed for .REVS sciftware.with additional. requirements for user data 
base space.· ~1aking allowance·for four concurrent users.·we could· visualize. 
a very • fast version of REV.S with 4. to 6 Mbytes -of· primary ·memory. : 

However~ we believe that approx·imately 2 IVIbytes. is a··desirable,,primary 
storage figure· for the .STE that ·would support further.:REVS performance trade­
offs and allow margin for other host system functions as·well as future.tool 
.growth. As little as 1 Mbyte might be acceptable if• I/0 transfer was· ex­
tremely effic-i·ent. Accordingly, we will. set a cut-off threshold at•·l IVIbyte · 
for potential STE candidate hosts. . . · 
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To illustrate the impact of primary mem()ry _1 imitations on I/0 transfers 9 

we will cite the air defense example mentiohed in 3.1.1. The data base for 
this system is about l.l Mbytes. On the CDC 7600 at the BMDATC ARC, virtually 
all of this data base is contained in LCI\1. On the TRW TSS Cyber configura­
tion, only a fraction of the data is in central memory. For the test case 
previously cited, I/0 activity at the ARC was 7.4 Mbytes, while on TSS it 
leaped to 1063 Mbytes. Because of the long execution time on TSS, much of this 
activity was undoubtedly also due to job swapping. 

3. 1.3 Mass Storage 

The STE production environment must allow for REVS software files, 
object code mass storage, plus adequate allowance for active and archived 
user data bases. Table 3.1 shows a breakdown of the minimum production phas~ 
mass storage for the REVS software and ancillary files (3.35 Mbytes). To 
this should be added space for up to six active projects and ten archived 
projects. 

REVS project data bases vary considerably in final size, and of course 
vary in size during development. One of the larger data bases we have 
developed so far, for the air defense system mentioned previously, is about 
1.1 Mbyte in size. While many data bases for operational systems might 
reach that size, experimental data bases (and those for most systems) are 
generally more compact. The assumption of a 0.5 Mbyte final data base size 
is realistic for mass storage sizing . 

. 
In practice, it has been found that an active mass storage allocation 

of about five times th~ existing data base size is desirable during the· 
early phases of a project with a reduction to three times data b~se size 
permissible as the data base nears· completion. However, allowance must be 
made for storage of simulators and post-processors when they are used. We, 
thus, are recommending that the minimum allocation be maintained at five 
times data base size throughout the project for STE purposes. This provides 
adequate room for creation of new data base versions and retention of selected 
previous data base versions. 

Conservatively using a 0.5 Mbyte size and-multiplying by 5, the average 
project allowance should be 2.5 Mbytes. Allowing for sixteen data bases (six 
active projects, ten inactive) Yields a minimum mass storage allowance of 
43.35 Mbytes, after adding in the 3.35 Mbytes for REVS software. Additional 
allowance must be made for user I/0 files and host system needs. 

_ During installation of the.REVS, 12 Mbytes of mass storage is needed for 
the software, as shown in Table 3.2. Installation of a modified REVS con-· 
current with production use of a previous version could require up to 12 
Mbytes over the production ·needs estimited above. 

I 
Finally, if the STE is to be used for further development and modifi­

cation of REVS concurrent with production u~e and evaluation, extra mass 
storage allowance mu-st be made for a REVS development phase. At most, this 
would be twice the installation allowance plus 20 percent, or 29 Mbytes, but 
could be as low as 15 Mbytes. For estimation purposes, we ~ill use the hi~her 
number. 
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Table 3.1 Production Phase Mass Storage Files 
For REVS ·Software 

': r 

FILE 

TRW REVS 7600 SYSTEM 

.e PASCAL LIBRARY 

·. 0 PASCAL C0~1PILER 

G NESTER 

o • DATA BASE LIBRARY 

REVS 200 

e SEGMENTED CODE OF REVS SYSTEM 

.. VVDB 

t · EMPTY SIMULATION. DATA BASE 

:VVDBT · 

· e SIMLiLATION DATA • BASE TABLE 

ASSMDBRSL :wCLEUS 

e : NOMirjAL INITIAL RSl: DATA: BASE 

· ASSI-lDBT 

e RSL DATA BASE TABLE 

DONNEES . ·· 

. 1 ;RSL TRANSL.ATOR INI-TIALIZATION· 

RISF 

e CODE PIECES FOR SIMULATOR 

VVDBLDR 

1 SIMULATION DATA 'BASE BUILDER· 
.. 

CDC 60-BIT 
WORDS. 

103.102 . 

277,929 

2:,703 

1.56 

13,566 

823-

7,852 

7,080 

32.870 

TOTAL 446,081 * 

*(APPROXII\ATELY 3.35 MBY'TES) 
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Table 3.2 Installation-Phas~ Mass Storage Files 
For REVS Software 

FILE CDC 60-BIT 
.. WORDS 

CWSPC 59,395 

• COMPILER WRITING SYSTEM SOURCE 

PASCAL- SOURCE 7600 69,437 

• PASCAL COf~PILER & LIBRARY. SOURCE 

REVSCDCSOURCE 2X(308040) 616,080 

• REVS SOURCE 

• TWO COPIES REQUIRED FOR CWS UPDATE 

REVSDBCSSOURCE 38,882 
Q SOURCE OF DATA BASE CONTRO.L SYSTEM 

REVSTESTCASES' 82,992 
e 'REVS RSL TEST "CASES 

ASS~1DB 2,703 

• EMPTY ASSM DATA BASE 

PLIB 46,701 

• PASCAL LIBRARY 

REVSDBCSLIB 51,.224 

• DBCS LIBRARY 

REVSLIB 56,242 
Q REVS OBJECT CODE LIBRARY 

REVSMAC 3,557 

• REVS JOB CONTROL.PROGRAM 

VVLIBE. 4,240 

0 TEMP OBJECT LIBRARY 

· SUBTOTAL 1,031,453 

PRODUCTION FILES FROM TABLE 3.1 446,081 

TOTAL 1,477,574* 

* (APPRO X If~AT ELY 12 MBYTES) 
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Thus, the STE shou·l d provide for 72 Mbytes ( 43 + 20) of mass storage 
associated with REVS development and use, with-additional allowance for user 
I/0 files and host system needs. The latter must be assessed for the STE 
as a whole, a~d in conjunction with evaluation of the STE cand~d~t~s. 

3.1.4 REVS Inte~ac~ive Color Graphics Reg~irements 
... , 

This paragraph discusses the current REVS graphics ~n~ironment and 
interfaces at the BMDATC ARC, and outlines color graphics support require­
ments for the STE. 

3.1.4.'1 ARC Graphics. System Hardware. 

The ARC Graphics System consists of four interactive .terminal sets 
connected through special-purpose interface hardware and software to the 
CDC 6400/7600 data processing system located in'thE ARC facility in Huntsville, 
Alabama. Each terminal set includes a 19-inch color CRT, keyboard, and 
trackball positioned cursor. The system is supplemented-by. a large screen 
video projector and· a black. and. white hard copy device~· Terminal operation 
is initiated and controlled by t·ime-shared batch jobs executing in the CDC 
6400/7600 computer system. User access to the graphics terminals is sup­
ported by a package of FORTRAN callable subroutines that generate display 
output commands and rece.i ve keyboard and trackball cursor inputs. 

The major hardvvare components of the ARC Graphics System are: 

1 Corrmunications processor 
o Anagraph display system 

• Large screeri video projector 
• Hard-copy unit. 

The cufrent ARC configuration is no longer commercially ~~~ilable. A modern 
equivalent would b~ the Ramtek 9400 Gra~hic~·Display SY~tem. A minimum price 
option version supporting two terminals would cost between $50K and $lOOK. 
Such ~ system could support only local on-site use. 

3.1.4~2 Proposed STE REVS Color Graphics Environment Requirements 

The STE should permit simultaneous corinecti6n, via local or remo~e 
RS-232-C full duplex serial data ~nterface, of at least two interactive 
color~graphics terminals at a lin~ rate of 4800 baud or higher. Th~ STE 
graphics terminals should provide a serial RS-232-C full duplex interface 
with user-sele~table transmit/receive rates up to the maximum rate.·, Each 
terminal should provide an EIA-RS-330 closed-circuit television standard 
interface for attachment of hard copy units/video ·monitors /video recorders. 

The ·sTE:. graphics tern1inals sho~ld pr6vide a displayw·Hh '480' x·640 
point resolution and should be capable of simultaneously displaying eight 
distinct colors under application program control. Screen diagonal size 
should be greater than or equal to 13 inches. 
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The STE graphics terminals should prov.ide sufficient memory to store 
a full display of graphi~s data. Adequacy must be determined ~ccording to 
the display definition requirements of the particular terminal as estimated 
against REVS graphics display benchmarks (to be determined). . 

The display should su~port the standard. ASCII.96 upper case/lower case 
character set at minimum. Graphics software provided by the vendor should 
be capable of-interfacing with FORTRAN 6r Pascal software residing on the 
STE host computer. The graphics display should provide a user-steerable input 
cursor, controlled by trackball, keys, or joystick and should allow for alpha-
numeric data entry concurrent with graphic display. · 

Other desirable features to be evaluated ~n th~ selection of a graphics 
display terminal are: 

t Cost ~ $20K configured per requirements. 
e Additional user aids (e.g., ruling characters, patterns, forms/ 

data entry aids). 

8 Support for- geometric sh_apes and. spedal S.YllJbols. 

The STE graphics support peripherals should include a video .hardcopy 
unit, capable of interfacing with multiple. graphics terminals,. to output 
8-1/2 by 11 black and white hard copies of terminal displays. 

3.1.5 Plotter Hardware 

REVS currently makes use of CALCOMP continuous roll-feed plotters, with 
both 12 inch and 30 inch width paper at the BMOATC ARC. REVS produces a plot 
input tape so that the plotters can be operated off~iine; 

The large-size plots are used ~s working drawings,:but are generally 
too large for inclusion in documentation. Plots on 12 i~ch papei (hei8ht) 
can be used on fold-out pages, if not excessively .wide, and on st~ndard 
8-l /2 by 11 pages for the majority of instances. future REVS development 
will focus on making 8-l/2 by 11 inch .plots mere legible and useful in 
publicati~ns. 

While the c6ntinuous-feed plotters and .optio~al 30 inch 
desirable features, they need not be mandatory for the STE. 
STE plotter must produce at least 8-l/2 by ll.inch plots and 
input in CALCOMP compatible format. 

3.1.6 Card Reader/Alphanumeric CRT Term·inals 

width are 
However., an 
accept tape 

Inputs to REVS vary from a few ca·rd images up to 2000 card images under 
usual working conditions. The larger input sets ~re used in the earlier 
stages of data base construction. 

With the trend to 11·cardless" data entry environments, the card ·reader 
is becoming more of an optional extra than a necessity. For the STE, this 
is also true. REVS inputs c~n be handled directly from cards, indirectly 
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via creation of input files using an alphanumeric CRT terminal, or directly 
vi a the interactive g'raphi cs'"termi na 1. The' STE should provi qe the capabi 1 ity 
to construct ar1d edit input files without having to invoke REVS. 

The only real req~ire~~nt 6n a card r~ader or CRT ter~inal, f6r i'nput, 
is that it be able to accept standard SO-column card images -and transfer them 
in a form acceptable to the selected STE host computer. In the case. of CRT 
terminals, the terminal should be able to display the same images. The full 
ASCII 96 character set should be ~upported. · 

· 3; l. 7· Tape Unit 

REVS currently prepares CALCOMP plot files on magnetic tape for offline 
plotter fnput; A low speed tape unit is sufficient for this purpose and. 
would also meet unspecified genera 1 uti 1 ity needs for an STE. 

3. 1.8 Line Printer 

Currently, at TRW Huntsville, a 300 to 400 lines/minutes printer is used. 
While this ts a practical maximum for use over a 4800 baud line, it is a 
bottleneck·when 'multiple· copies of longer output listings are necessary. An 
on-site STE line printer should be 600 li.nes/minute minimum. It should sup­
port-the ASCII' 96 character set to meet future development needs, but at 
least the 64 character set is mandatory; .. 

3.1.9 External Communication 

. The STE should support dial-up communication from remote sites, using 
· ·RS-232-C. interfaces, with selectable line transmission rates up to at least 
··4800 bau~. The ·STE sho~ld s~ppdrt at least si~ inp~t li'nes, which can be 

divided in any manner between local and remote use, and be easily recon­
figured. This capability will be sufficient for all three tools, REVS, 
PERCAM; and AUTOIDEF. . . 

3.1.10 Internal I/0 Transfer 
-< 

I/0 transfer rates sufficient for effective ~EVS·operation must be 
assessed in the context of CPU speed, primary memory size, and memory 
manag_~ment strategy for each STE candidate machine. As discus.sed in 3.1.2, 
limitations on primary memorY can 'have a profound inipact on I/0 requirements. 

3.2 PERCA~~ RESOURCE REQUIREMENTS 

The needs of PERCAM are generally small compared to those of REVS and 
AUTOIDEF. The exception may be in CPU speed whe~e slower speeds will place 
'1imits on Monte Carlo replica~ion capabilities. 

3.2.1 ·CPU Sp~ed 

. A_s. c;liscussed in Paragraph 4.2, the execution time for a PERCAM run, for 
. a given CPU speed, is: a. multiplicative function of the number of 11 attackers 11

, 

·number of 11 defenders 11
, ,number of time steps, and complexity of the ELT logic. 
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. For singl~ det~r'min:istic cases, typ.ical execution times are modest (on the 
order of 20 ~o 6d"t~u seconds on t~~·coc 7~00 and 1 to 5 minut~s~cin the CDC 
6600) .. In the usual case of one or two. runs per day, a 50:1 slowdown ratio 
versus the CDC 7.600 wou.ld be tolerable. However, .for studies requiring up to 
100 Monte Carlo replications., submitted at the rate of 5 to 10 per day mini­
mum, a slowdown of <10:1 would be desirable. For a give~ STE CPU speed, one 
must accept limits on the scenario ~ize and number 6f replications. Determi­
nation of an 11 acceptable 11 CPU speed requi,res detailed analysis of the modeling 
needs of the particular user. For the STE, this can be gained only through 
experience with PERCAM models of typical STE applications'. 

3.2.2 Primary Memory 

PERCAM typically executes in 80 to 100 Kbytes of memory. Working file 
space is less than 0.4 l~bytes. Thus, primary memory requirements are not 
signific~nt compared tq REVS. 

3.2.3 ~ass Storage 

The standard PERCAM ~oftware (LibrarY Builder, Preprocessor,· Component 
Library, and Post-processor) occupies 1 ess than 0. 3 Mbytes. · Graphics soft­
ware occupies about 0. 05 t~bytes. Working fi 1 es are usually processed and not · 
saved. Therefore, 1 to 2 Mbytes allowance for temporary storage is generous, 

. and is insignificant with respect to total STE requirements·. 

3.2.4 Graphics Hardware 
. 

· PERCAM needs can· be satisfied within _the capabilities needed for either 
REVS br AUTOIDEF. 

· 3.2.5 Plotter Hardware 

·A CALCOMP compatible plotter producing 8-l/2 by ll ·inch plots (simple 
bar charts, histograms, and curves) is adequate for PERCAM use. 

3.2.6. Card.Reader/Tape Unft/Line Printer 

PERCAM input/output requirements are minimal and can easily be satisfied 
within the REVS requirements. 

3.3 AUTOIDEF RESOURCE REQUIREMENTS · 

The requirements herein are tentative, based upon preliminary informa­
tion, _and subject to change downward .. As of this writing, Boeing ~omputer 
Services is conducting a performance improvement program_to increase the 
speed and efficiency of the prototype system. Further ·information and 
impacts of Build 2 will be noted in the STE Final IReport. 

3.3. 1 CPU Speed 

·Because AUTOIDEF is an interactive input system, CPU speed is but one 
component of total system performance .. A basic unit of accomplishment is 
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the cons.tructiori.of an IDEF.diagram. On the current Bui1d J ·system,· tnis··. · 
takes from-20.miriutes.to l.5hours wall clock time. ·Average CPU time·on· .. , 
the Cyber 175--is.about 60.secorids. The'rough·average ratio·:·ofwan·clock .· 
time/CPU time is.about 50:1, indicating that CPU speed is nbt a bottlen~ck: 
on the present system .. :However, the overa'll system performance is ~lower · 
than'd~sirabl~. c • · · · · · • 

·,, .· 

. t4e -~'oul'd expect ~om{perfor~atite improvements t() concentrat~· on the 'i. 
DBMS software. From .. our experience with as i.mil ar .·DBMS on REVS, 'we found·· 
that speed can be increased up to 100:1~ but at a·sacr'ifice ofp'ortability···, 
and generality. Of greater importance is the current use by requirement 
of the Tektronix 4014 storage tube display terminal. Be·cause storage tube. 
'displays cannot be selectively refreshed, the entire display must be re­
painted each tiG~e anyt~ing is changed.·· Tnis slows the performance~of: the 

system. ·· · ·· · · · · ··· .· · '· 

We believe that AUTOIDEF could tolerate at least a 5:1 slowdown rela­
tive to the Cyber 175 (i.e., about 30:1 relative to a CDC 7600r, and perhaps 
more, provided software and display efficiencies are sufi~bly incr~~sed: 
Analysis of the<tolerable slowdown must· be done for each candidate STE 

, confi gurat i o·n. · · · · 
'·; '. 

3.3 .. 2 Primary Memory' 

Present estimates for the Cyber 175 configuration are 1700008 CDC 60-bit 
1 words for program space and 300008 words for data area. t~~i would 1m~ly 
:a miniml:lm or o:61~bytes oT primarY stbragemust be available to the user. 

3.3.3 Mass Storage 

The current. data we have indicates a 50 Mword disk allowance for a 
large mimufacturing environment proJect.· ·This translat~s to aboutAOO ~1bytes. 
AUTOIDEF presumes that a11 previous: versions of material -in the data base.· 

. will be retained. A more appropriate allowance for the STE might be 5 to 10 
, Mbytes per 11 project 11 with an allowa~ce for four active· proj_ects~_n9.10' 

archived proje<::ts. Approximate lj ll5 Mbytes should be sufficient for user 
files' source code storage and object code storage. . . ' ' >: 

3.3.4 Graphics Hardware 

. Cyrrenqy, AUTOIDEF is required to support the Tektronix 4014-l Graphics 
Display Unit.(storage tube type)·wlth·.input via the Tektronix 4953 Graphics 
Ta61et.· This ti tri bi:com~atible ~ith cu~rent"CYBERNET equipment.r:;Depen~ 
dencies on the TektroniX 4014 are limited tci the user interface functions·· 
of AUTOlDEF. They are not unique. to the 4014, but apply to' anY graphics 
terminal configured ·with a storage tube. · BCS has made design provisions,. 
for eventual transfer to a refresh type terminal. 
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The functions that depend on a storage tube are of two types -- both con­
cerned with the user input method. The first is the display of the menu 
options and the necessity for redisplaying the entire screen when the menu 
area is full. Secondly, input of box name and number of small boxes are 
entered in the lower area of the screen to avoid the extraneous information 
necessary to prompt for the text in the IDEF form message field. 

More general requirements imposed on AUTOIDEF as stated as follows: 

. e . "It is desirable that the IDEF tool provide a graphics data 
base resolution (i.e., the minimum number of-addressable 
points) of at least 32,768 points in each direction. The 
graphics display must have .a resolut'ion of at .least 1024 
points over 15 inches on a single axis."· 

e "The IDEF form shall be displayed at its actual size or 
reasonably close. The full siz.e of the ·form is 10.0 inches 
wide .and 7.0 inch~s high. The message field for the IDEF 
diagram is 6.0 inches by 10.0 ·inthes. The cle~ical infor­
mation at the top and bottom·of the IDEF form should be 
displayed (10.0 inches wide by 0.7 inches high at the top, 
10.0 inches wide by 0.4 inches high at the bottom)." 

Relaxation of these requirements may be possible in the STE. There 
is no current AUTOIDEF requirement for color display. 

3.3~5 Plotter Hardware 

AUTOIDEF is currently supported by a CALCOMP plotter. Any equivalent 
plotter supporting basic CALCOMP softw~re interfaces and ~reducing 8-1/2 
x ll inch plots of equal quality would suffice. Off-line support via tape 
input is satisfactory. · 

3.3.6 Card Reader/Tape Unit/Line Printer 

As AUTOIDEF is basically a graphics input/output tool, there are no 
specific requirements for other peripherals. However, these may have a role 
in installation· and maintenance, and a tape unit would be needed for off-line 
plotting. Any of these peripheral needs are satisfied within the REVS hard­
ware requirements. 

3.4 STE HARDWARE SELECTION CONSIDERATIONS 

In the future evaluation of candidate machines to meet STE needs, it. 
is important to remember that maximum p·erformance is not the goal.· The ob­
jective is to define the most economical and bala~ced system that can handle 
the anticipated user load effectively during the R&D phase, and be later 
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deployed for production use. In the case of current ARPANET machines, avail­
ability .(i.e., percent capability effectively open for STE use) is also a 
major consideration.· · 

·rn later nperational- use, the selected· configuration must be accessible 
by u·sers and responsive within their schedule requirements. Hence, the pro­
jected user load profiles and STE time-sharing policies are of primary 
importance in configuring the STE. · 

For the R&D phase, it will be assumed that four different groups will 
be accessing the ST[ on a regular basis. These will be a tool development 
contractor, a tool evaluation contractor, RADC technical specialists, and 
other Air Fore~ potential u~ers. Over these groups it is expected that ho 
rriore than six individuals, and usually no more than three will be trying to 
use the prototype STE at a given ·time. 

The· p'robabi'listic workload demanded from the STE is to be synthesized 
using the tool utilization data in Section 4 with consid~ratinn for .the 
particular patameters of e~ch candidate ST~ configuration. Then other 
factors of that, configuration such as cost and availabi'l ity are to be 
weighed against ~tilization -to determine the merits of the candidate . 

. . , .... , 
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4.0 TOOL UTI~IZATION PROFILES 

Thi~ ~ection presents typical observed utilization information about 
REVS, PERCAM, and AUTOIDEF to be used during the evaluation of STE candidate 
configurations. Beca~se AUTOIDEE ha~ been introduc~d only recently, opera­
tional information has not yet been accumulated and can only be postulated. 

4. l REVS UTILIZATION 

Because REVS is a complex software system, three phases of operation 
mu~t be addressed: development, installation~ and production. The develop­
ment phase is typical of most experimental software projects. Various alter­
native solutions to a problem may be tested_ on-a trial basis, or a specific 
set of modifications may be implemented according to a formal schedule. 
Without knowledge of the spe~ific task to be done, one cannot predict a 
specific activity load. 

·.• 

· At some point, however, REVS must be installed on the host system. 
The s·ame procedur.e is followed whether it is an initial installation or 
introduction of a modified version. A minimum schedule for the installation 
prbcess is five working days because inter~ediate outputs must be inspected 
and verified-at each step. Table 4.1 presents the typical sequence of runs, 
by day, and tabulates relevant parameters for each run. The schedule may be 
extended and re-runs made necessary by problems encountered along the way. 
It is expected that the installation sequen-ce-will be performed infrequently 
at the. STE. · 

. The "production phase" (i.e., application by users) will be the primary 
STE operating mode; A REVS data. base may be. constr~cted over a one to six 
month period, depending on its scope and complexity. The time-span of a 
REVS project is doubled when full simulation is employed; 

Figures 4-1 through 4-4 present REVS u~age data gathered iri Marc~ and 
April 1980 from a real IV&V project employing REVS to verify software require­
ments for a major Army missile system. The data presented is for runs asso­
ciated with the airborne computer-program requirements, and ;represents a 
typical slice of project activity. 

Figure 4-l shows the distribution of days on which runs were made over 
a nine-week interval, and notes the number of runs each day and total CPU 
time used:· Indi vidual run times varied from -four· to twenty-seven· seconds. 
The data base gr~w from an initial 224 Kbytes on the first run date to about 
472· Kbytes at the· end of the period~ 

From Figure 4-2, one can determine the relative frequencies of various 
numbers of runs per day over the period. Figu~e 4-3 enables an estimation 
of the number of days to the next ron day (e;g., 0 means multiple runs on 
the same day, l means approximately one day between runs, etc.). Figure 4~4 
shows the distribution of runs by time of day. There is significantly more 
activity toward the end of the day, partly to submit jobs for overnight pro-

. cessing so that results are available in the morning. The STE evaluation 
should consider such skew~ in loading. 
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Table 4~1 BEYS In~tall~tion Runs 

.. 

DAY .. RUN .. -· -·· DESCRIPTION CDC 7600 'I/O PRINTOUT . 
'NO. CPU SEC. r-1WORDS PAGES· 

-1 .. COPY PERMFI.LES 1B.5 2.r7. 10 
2 LIST CbMPI~ER W~ITING .SYSTEM - 4.5 .57 250 
"' 

1 3 LIST DBCS PROGRAI-1 L IBimRY 4.0 .44 . 200 
4 LIST PASCAL COMPILER .. s:1 .67 300 .. 

5 LIST REVS 21.5 2.74 1200 . 

6 LIST REVS TEST ~ASE~. 6.8 .139. 400 ' 
·' 

2 
... 7 CREATE RSL TRANSLATOR 

' 
29.4 _2.lB. '100 

,. B CREATE DATA BASE LIBRARY 27.1 1.10 sao· 
. ' 

9 . CR~ATE REVS L0/\0 MODULE (COMPILE REVS). -119.8 2.60 50 . 

3 10 CREATE VVLIBE, VVDBLDR, 2.2 : .. 04- 20 
: 

11 " tREATE NULL ASSM 0.6 .02. 50 
- ··-·--··· -~- --·----··- -

12 CR£1\TE RISF 0.3 .01 10 
13 CREATE JSL EMULATORS ' 19.5 .• 21 20 4 
14 CREATE REVS LIB 5.3 . 13·' . 5. 

.. 

1.5 tW1·111ML. 'rtHTIAL' ASSM : 4.6 .07 25 .. . ' 

16 CONSTRUCT PASCAL LIBRARY {PLIB) .. · . 22.3 .48 50 
• .. ' 
5 17 . MERGE "PL IB AND REVS LIB 7.4 .. ' ' .22 '· 30 

1~~:· EXECUTE TEST CASES .;.;304.0 -- --
., ; 

. ' ,. 
-;. '. .. .. ,_.1 *ACTUALLY UP fO· 35 SEPARATE JOBS .. ; . '. 

'. ·TOTALS 
. . 

>14:54 >3220 '· '\,604 .. ., 
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4.2 PERCAM UTILIZATION 

The time-span of PERCAM projects varies from two weeks (narrowly-focused 
efforts) to a year (complex tactical scenarios and issues). The typical 
small project employs a deterministic model to examine the basic relati.on­
.ships and function of a conflict system. Larger and more complex projects 
involv~ the statistical simulation. of systems with emphasis on sensitivity 
analysis ahd more detailed modeling: PERCAM. is used ·with a 11 learning curve 11 

philosophy. A simple model is initially built and then progressively 
corrected, refined, and expanded as understanding of the problem is gained. 
For most projects, a consistent one or two runs per day are required. 

Table 4.2 illustrates a typical ~~oj~ct run history for a two man-week 
project. The first week was spent jn learning the basic mod~l and tuning it 
to simulate the requi·red constraints. · The second week was spent in completing 

. the moael to display the engagements that were desirep. As shown by the 
table, there is a ~rowth in the amount of computer program time r~quired as 
the model reaches- its maturity, an·d then a final set of runs as the completed 
model is executed for final results. Table 4.3 illustrates the history of 
a longer ~ffort that passed thro~gh three distinct phases. 

00 .... 
~ 
I 
~ 
00 
~ 

Table 4.2 Example PERCAM Study Number One 

o -20 AnACKERS VERSUS ONE DEFENDER 

e TWO HAN-WEEK .EFFORT 

ONE WEEK FOR THE LEARNING CURVE AND EVENT 
LOGIC TREES . 

- ONE WEEK FOR COMPUTER RUNS AND DOCUMENTATION 

e CDC 760.0 ~OMPUTER UTILIZATION - 270 SECONDS 

CHECKOUT STUDY 

RUN·NO. CPU SEC. RUN NO. · CPU SEC. 

1 11.445 8 22.210 
2 20.161 9 22.080 
3 20.133 10 22.005 
4 20.720 11 22:023 
5 22.019 . 12 21.722 
6 21.199 13 21.687 
7 22.582 SUBTOTAL 131.727 

SUBOTAL 138.259 

~~--------~--------------~------~ 
The execution time of a PERCAM model is a mu'ltiplicative function of 

the followin~ facto~~; 

t Number of time steps over the simulatibn interval 

• Number of 11 attackers 11 
· 
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Table 4.3 Example PERCAM Study Number Two 

. t 18 ATTACKERS VERSUS .. 20 DEFENDERS . 

o FOUR MAN-WEEK EFFORT . 
I '•'. ,· 

- TWO'WEEKS FOR MODULE BUILDING . 
-. ONE WEEK FOR MODEL VERIFICATION 
- ONE WEEK FOR PARAMETRIC AND SENSITIVITY ANALYSIS . ; .· . . '· . . . ·.· ':··"". 

. ;_ 

0. CDC 7600 CPU' UTILIZATION.- 457 SECONDS 

PARAMETRIC AND. SENSITIVITY . 
ANA(YSIS PHASE . · . 

"RUN NO~; CPU SEC. RUN NO. CPU SEC. RUN NO. CPU SEC; 
. ',\ 

1 8.492 .11 22.219 17 50~271 
2 10.318 12 . '20'. 719 . 18 '41.235' 
3 16.191 1.3 20.917 19. 41 :404' 

.. 4 16.382 . 14 11.911 20 .· 42,746 
5 4.599· 15 12.675 

.. 6 18.918 16 22.43'5 · SUBTOTAL · 175.656 

7 20.567 SUBTOTAL 110.8?6 
8 20.381 

. ~ . . 

9 16.701 
10 38.583 

SUBTOTAL 170.072 

t Number of "defenders" 

t Number of Monte Carlo r~plication~ 

t Complexity of the Event Logic. Tr~es. 

The amount of memory: required· i·s· an ·additiv·e 'function of the complexity 
of the executive and the complexity of the Everit Logic Trees plus a multi­
plicative function of the f~llowing: 

t Number of ~ttackers 

• Number of defenders 

a Number of aitacker/d~fender parameters. 

Typically, when Monte Carlo runs are needed, jobs ar·e submitted in 
small increments over sev.eral days,. then subjected to final post-processing. 

4.3 AUTOIDEF UTILIZATION 

Constru.ctio.n of·a··s1ngl~ :tDEF diagram requires 20 to' 90 minutes. A 
diagram contains up to six "boxes", each of which may be detailed in a 
lower lev.el diagram. A·fu11 day•s work would involv,e con$truG,tion.of a 
diagram and the diagrams for its subord.inate boxes. ·More expe.ri!;!nce needs 
to be accumulated before a typical pattern of activity is appare·nt. Further 
performance .improvement efforts are in progress~ 
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5:0 STE REQU I RE~·1ENT$ SUMt·1ARY ·. 

This section consolidates requirements for the STE in an abbreviated 
checklist form, considering the combined needs Jar REVS,PERCJ\fl1, and AUTOIDEF. 
Software support requirements are listed in Paragraph 5.1 and.hardware 
requirements· are lis·ted in Paragraph 5.2 .. In both of these paragraphs, th~ 
tool or tools that primarily drive each requirement are i:ndicated in .paren­
theses-- {R) for REVS, {P) for PERCN1, (A) for AUTOIDEF (or combinations of 
these). Other requirements, without identifiers in parentheses, are inserted 
to provide features necessary to support an STE environment independent of 
the specific tools. Integration issues identified in the-compilation of 
these requirements are briefly discu~sed in P~ragraph 5.3. 

5.1 SOFTWARE ENVIRONMfNT REQUIREMENTS SUMMARY . ·' . . 

• Pascal Com~~1er (R} 
- extensions per Paragraph 2. 1.6.1 

1 FORTRAN Comp~ler 

'ANSI 'FORTRAN 66 with foi lowing extensions: 

1. random file I/0 (R,A) 
2. MASK,.SHIFT, ENCODE, DECODE functions {R,A) 
3. support of '>< char~cters (P) 
4. Namelist I/0 (P) . . 
5. operand conflicts allowed in arithmetic statements (A) 
6. use of literals instead of Holle~ith data allowed (A) 
7. use of ENTRY statem~nts allowed :(A) 

• Pascal app1lc·ati6n to ope~ating system communication 
capability per Paragraph 2.1.6.2 (R) -. 

e ASCII 96 character set desirable, 64.charatter set mhlimum· 
(R~A) 

• Memory ~·1anagement ( R ,A) 

- segmented loader transparent to application program 
(or) 
-. virtual memory management system 

• Plotter Support Software (R,P,A) 
- CALCOMP FORTRAN interfaces-

- equivalent.to basic CALCOMP ~outines 

• Graphics Support Software 
- FORTRAN callable {R,A) . 
-. _compatible with ACI'fl/SIGGRAPH GSPC Core System (A) 
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e Job Control · 
- multi-phase (R,P) 

· ~ Modifta6le from within application program (R) ·. 
o Dynam.i c file _acces~ · (R,A): · 

' Possible compatib1lity.with check-point restart capability 
at· later date· (P) 

· e Library ·managemen.t utility (R,P,A) 

o·· Sort/m~rge utility (P) 
a Independent data entry /edit utility 

• Time-sharing e~vironment support 
1 'Local/remote communications support ' 

5.2 HARDWARE ENVIRONMENT SUMMARY 

o CPU speed (R,P,A) 

. -... 

... 
J 

- only machines with less than 55:1 slowdown relative to 
CDC "7600 will be.considered 

o Primary Storage (R) 
- more than 1 Mbytes; 2 Mbyte nomina 1·· · 

e Mass Storage (R,P,A) -

- at least 187 Mbvtes on-line plus (:to be determined) 
allowance fOr system, ·user I/O files 
(or) at least 120 Mbytes on.,-line with archives on 
remo~~~le di~k pack~ · 

e . REVS Color,Graphics Har~ware .(R,?) 
- requirements per Paragraph l.l:4 

o AUTOIDEF Graphics Hardware (A) 
- . r~quirements per P~ragraph 3:3.4 

• Plotter Hardwa~e (R,P,A) · · 
- CALCOMP compatible, P-l/2 by 11 format min.imum 

- continuous-feed 12 inch~and 30 inch ~aper wid:ths 
desirable for REVS, if available. 

. . . ·, 

- off-line op~ration, tape irput 
• Data Entry Devices (R,P) 

,•, .. 

- card reader and/or alphanumeric terminal as desired by STE -­
tools set no particular requirements except ability to accept 
80 column ca~d images {and display them in the case of CRT 
terminals). 
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1 Tape Unit (R,P,A) 

low speed utility acceptable 

- used primarily to generate plotter tapes 

0 Line Printer (R) 

- 600 lines/minute minimum 

- ASCII-96 character set desirable, 64 character m·inimum 

e Internal I/0 Transfer Rates 

to be assessed for each configuration in conjunction with 
CPU speed, memory confi~uration 

5.3 STE INTEGRATION ISSUES 

The requirements levied on the STE by the tools form a compatible set 
except for the graphics hardware requirements of REVS and AUTOIDEF. REVS 
uses a col or graphics capability, while· AUTOIDEF currently uses a Tektronix 
4014 high resolution, monochrome, storage tube device of·the type used for 
eng·ineering drawing applications. Use of a mono.chrome display for REVS is 
feasible, but not desirable for human engineering reasons. Color is valuable 
for readily differentiating different types of display nodes,'"menu selections, 
and error conditions. Sufficient size and resolution may be obtainable wi.th- · 
in .the REVS requirements to support AUTOIDEF·needs for the STE. During 
future evaluation of graphics equipment, we will assess means of adequately 
meeting the needs of both tools with a single terminal: · . 

Both REVS and AUTOIDEF use variants of the University of Michigan 
ADBMS data base management system. It may be feasible to satisfy the needs 
of both tools with a common system, although one or botn of the tools may 
need to be modified .. This possibility should be explored during future 
implementation of an_ STE. 
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6.0 SURVEY OF ARPANET SYSTEM HOSTS 

This section presents the results of Task 2 of the .STE Study. The objec­
tive of Task 2 was to determine existing computer systems accessible through 
the ARPANET which have sufficient resources availabl~ to provide the STE and 
which meet the requirements defined by Task l. Further objectives were to 
obtain costs for using the system and availability over the next five years, 

·and to identify systems which could be improved sufficiently to provide the 
STE. 

We have; identified several ARPANET nodes, us i ngv CDC ,and non-CDC machines, 
that have the capability to support the STE. However, reiiable data on costs 
and availability proved nearly impossible to gather, and was not known to the 
ARPANET Network Information Center.· Two nodes, L:awrence Berkeley Labs (LBL) 
and Argonne National Labs (ANL) readily cooperated to provide as much infor­
mation as,.possible, buto.ther nodes were reluctant about making projections . 

. . ~osts of. u~ing REVS were estimated.using data pro~ided by lBL and AN~, 
and these estima,tes were comparable. However, comparison of these estimates 
with actual ~harges-for REVS·runs at the Naval Ai~ Development Center (NADC)~ 
during installation ir1 l~ay .1979 indicated that the ·NADC charges were approxi-
mately Jifteen times the estimates for LBL and ANL. The,cause: of this discre­
pancy caul d ·:nqt be a_scertai ned. Therefore, the- NADC charges arid LBL/AN~ 
estimates should be regar9ed as "high" and "low" boundaries on costs.· 

. ,. ' 

Simiiar problems were encountered in· trying to determine: accuraite slow.,. 
down ratios between various fa~ilies of computer systems and the CDC 7600. We 
have a~c~rate comparisons·between QDC 7600 and 6600 ~eries systems, based on 
actual REVS runs -that shows an average 6600 slowdown ~atio of 5.7:1 relative 
to ihe ~600. - ~owever; no sautee of reliable ihformation comparing computers 
frbm different vendors· could be found. Standard sources (e~q., D~ta Pr0 1 S EDP 
Buyer 1 S Bible, Auerbach Buyer 1 S Gui.de) do not provide a basis for corr1parison 
between manufacturers, and other investigators have found inaccuracies in.what 
data are provided [9]. We have~ thus, had to rely on estimates provided by 
TRW personnel experienced on several machines. 

Paragraph 6.1 discusses methods of investigation used in Task 2. Para­
graph 6.2 presents information gathered on CDC ARPANET hosts, while Paragraph 
6.3 presents information on non-CDC ARPANET hosts. In these paragraphs, nodes 
are referenced by their acronyms for brevity (e.g. , LBL for Lawrence Berkeley 
Labs). The full name of each node, and relevant node configuration information 
can be found in Appendix A, which is ordered by acronym. Paragraph 6.4 con­
siders the Honeywell 6180 hosts and rej~cts them for lack of a suitable Pascal 
compiler on Honeywell machines. 

Paragraph 6.5 presents available data on REVS running costs at NADC (an 
existing installation). Paragraph 6.6 discusses our conclusions about ARPANET 
hosts for the STE. 
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6.1 METHODS Of_ INVESTIGATION: TASk.2 

The following topics were investigated for each of a number of ini-tially 
screened ARPANET ho~t sites: 

··.· ... ·-· 

e Compliance with STE Software/Hardware Environment Requirements 
(summarized in Section 5). 

• Job Scheduling, Billing Algorithms and their Parameters. 

e Individ~alfCombined Host Utiliz~tion. 

Data were gathered by querying the ARPANET Network Information Center's on­
line database, by telephone intervi.ews_ with candidate host liaisons, and by 
ARPANET mail communications. Information regarding job scheduling and cost 
accounting algorithms was gathered by tel eph9·ne i nterv1 ews with each candi­
date host's ARPANET liaison, software systems personnel, and from documen-
tation on the candidate host's opeiating ~ystem. · 

ARPANET host utilization data was_prQvided by certain ARPANET·host 
liais.ons. The data reflected two measures of ·host utilization: First, we 
were concerned to measure the host operating system load irrespective of the 
source of jobs (loca-l ba,t~h, ARPANET interactive, etc.). On _this score, data 
was primarily qualitative and. provided in the _form .of "educated guesses" as 
to the average percent of.total- host ~apacity, utilized on an hourly and 
monthly basis. Secondly, we were concerned to measure ·host uti.lization 
ori gi nati ng i·n ARPANET activity (file transfer, interactive, mail , etc.). 
The available data were presented in the form of packets transferred to a 
given host per month. Regrettably, statistics di sti ngui shi ng interactive, 
mail and file-transfer activity at candidate ARPANET hosts were not available. 

6.2 CDC ARPANET HOSTS. 

In thi's paragraph, we present th-ose CDC ARPANET system hosts which are 
adequate_to each tool ~ri the STE and t~ the STE as a whole. ·The tools com­
prising the STE were originally developed~n Cdntro) Data machines and 
operating systems. We indicate those CDC ARPANET system hosts which use the 
"baseline" operating system for a given STE_ tool in the following discussion. 

6.2.1 Hardware/Software Functional ~equirements 

Table 6.1 presents the .status of each CDC ARPANET system host configu­
ration as determined by the hardware/software functional requirements imposed 
by the tools of the STE. 
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Table 6.1 CDC ARPI:\NET·.Host Evaluations 

,. 

GOOD MARGINAL UNACCEPTABLE UNDETERMINED· 

'·. ! .·. · LBL, EGLIN ,-AFWL, ... ' 

PER CAM NADC,DTNSRDC;BNL, .. NYU,WPAFB NSWC-WO ,NSWC.-DL, 
AFWL, FNWC . . .- : 

LBL, EGLIN ,AFWL, 

AUTO I DEF NADC~DTNSRDC,BNL, NYU ,t~PAFB 
.. ~·· ·NSWC-WO,NSHC;-DL : 

I AFWL,FNWC ... . ' ... 
·' .. 

RSL/REVS· LBL ,BNL., EGLIN ,AFWL, . , .. 
., 

NADC DTNSRDC,NSWC-WO, FNWC " NYU.,WPAFB. 
•' 

NSWC-DL 
,. .. ,. . ' .. 

PERC.AM. was. ori gi na.lly de vel oped und.er. the. CDC SCOPE operating sy~tem, 
AUTOIDEF under· the CDC NOS operating system, and'RSL/REVS under th~ COC S~QPE 
operating sys tern (with s·.ubsequent modifi cat;,ior and transport to a KRONOS · 
operating sys tern at .NADC). · · ; · 

Both the KRONOS 'and NOS operating systems rur1 on various machine·s at 
NADC.which makes thi~ host a good inst~llati·dn and inte~ration ~it~ for 'the 
STE. T~ date~ REVS ~nd PtRCAM have been installed·at NADC, 'but AUTOIDEF has 
not been installed. . _ , 

. The. NOS/BE operating system at EGLIN would_provide an adequate operating 
envi,ronment for STE.installatio'n.and integration since .·it extends NOS with 
certain kRONOS capabiliti~s. There· i~.the taveat, however, that th~ Pascal 
comp'jler at EGLIN has uncertain origins. )t resid~s in a user file but not 
in as·ystern file and, th·us, receives little or.no systemmaintenance. The 
compiler installed with REVS ·at NADC could possibly tie adapted, but the ~ 
extent of required modifications cannot be estimated precisely without.:·.· 
detailed comparison of the NADC arid EGLIN operating· syitems .. AT~o~ the job 
control lang~age interfaces with REVS must be verified to. be compatible with 

• current installations .. Considerable ~variation exists between different CDC 
operating systems and site Versions. : · ·· · · · · 

SCOPE, widely regarded as a 11 fri endly 11 operating environment for 1 a rge 
scale CDC software transfers, runs at AFWL, BNL, and NSWC-DL. However, AFWL 
and NSWC-DL are rated marginally adequate for STE installation and integra­
tion because their primary memory configurations are less than generous. The 
principle concern would be with REVS operations which might well tax the 
memory resources at these hosts, especially interactive operations during 
peak system load periods. If the primary memory configurations at these 
hosts were upgraded to meet the requirements of REVS operations, they would 
provide adequate sites for STE installation and integration. 
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Th~ BKY and SESAME op~rating syst~ms ~t. LBL are based on SCOPE version 
1.6 with extensions made to suit local service requirements. All other 
factors b~ing equal (an unusually optimi~tic assumption about computer opera­
tions), LBL would be a good operating environment ~or STE installation and 
integratidn since BKY and SESAME use the same program interfacas a~ do the 
other CDC' operating systems. LBL personnel have been most helpful .. They 
alone, among_CDC ARPANET personnel, provided .u§ with. data; on host utilization,· 
job.scheduling and job costing. Moreover, LBL's hardware configuration is 
similar to those enGountered in past STE installation and application . 
experienEes. We can, therefore, offer our assessment of.LBL's STE-~dequacy 
with mote assurance than in the case of other CDC ARPANET system hosts. Once 
again, detailed OP.er<;lting system comparisons must be made before a precise 
estimate of required modificRtions can be made. 

. . 

FNWC is rate~ unacceptable because the syst~m ~oft~are at that host 
lacks a Pascal compiler. Apart from this deficiency, FNWC would provide a 
good environment fQr the STE since it runs the SCOPE.operating system and has 
a good memory configuration for STE installation and· integration. Although 
the current compiler used with REVS could probably be installed with little 
difficulty, FNWC is apparently reluctant to allow such installations. 

In sum, LBL, BNL, and NADC appear to be the best candidate CDC ARPANET 
. hosts to satisfy the STE. hardware/software functi anal requi re:ments . 

. ' 

6.2.2 CDC Host Job Scheduling Considerations 
' 

All CDC ARPANET host operating systems unlike~ say, UNIX or MULTICS, 
are primarily batch oriented. Thit is, incoming jobs are delayed in an input 

·queue for service and are schedul~d for execution on the basis of resource 
requests {e.g .. , CPU time, memory, peripherals). and a user-supplied priority. 
The priority of a job may be modified downward by the job -s.cheduler if al-lo­
cating the requested resources would significantly reduce system throughput. 
Jobs are initiated by entry into an "active" queue and multiplexed in a . 
round-:-robin fashion for time quanta that vary so as to enhance system through­
put. Interactive jobs are treated as essentially batch jobs with th~ highest 
priority and immed.iate entry into the active queue as default characteristics. 

The similarity among CDC ARPANET host job scheduling oolicies is a 
vestige of their common origin out of an earlier CDC operating system. The 
differences that do exist in_job scheduling policies across CDC ARPANET 
hosts attach primarily to the weight given the various resource quanta thit 

·affect a job's priority but not to the strategy of selecting the order in 
which jobs are executed. 

For instance, at LBL·, the key factor (total job "computing units" (CUs), 
see Section 6.2.4. 1 below) determining a job's effective scheduling oriority 
is computed as. a weighted sum of _its requested CPU time,. memory and oeriphe:­
rals service. The critical breakpoint value according to user ~ervice con­
tacts is 63 CUs. 
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In the next paragraph, we detail the job scheduling algorithms and 
policies at LBL, thus providi'ng a paradigm case of CDC ARPANET host job 
scheduling. 

6.2.2.1 Job Scheduling ·at:LBL · 

. Job resources include job slot identifiers called "control points", . 
small and large core m~mory (SCM and LCI'-1), the CPU, taoe drives, data cells, 
the chip stcire,· and unit record devices (printers, punches, microfilm proces­
sor, Calco~p plotters); 

• - t • • ' ' ~ : ' ' 

Resources are allocated on the basis of an "urgency" factor which is· a 
fu.nction ofjobcard:priority,·the age of a job (its t·ime iri the system), and 
other factors,turning on the res6urc~"beirig scheduled. The aging factor is 
cumulative through the life of the job and increases at a rate dependent on 
the _j obca rd ·priority. · 

Thre~·~eneral tY~e~ of sched~1ing a~e encounter~d as· a job flows through 
th~ system -- job· initiation, resource alJocation during execution, and queued 
file prbcessirig: · 

6.2.2~1-~ Job Initiation at LBL 

A j'ob enters the sy$t~m.when it reaches a 6000 .(.the 8 (6600) or C (6500) 
machine). Jobs are then sent to the specified machine to be placed in the 
input queue. Rush and normal jobs with a CU limit-of 63 or less will have- a 
higher urgency for initiation than other rush jobs. This is done to allow 
fast·t~rnaround for debug jobs. 

Jobs destined for the 7600 must first pass through the·· common 6000/7000 
input queue; While in the input queue, a job 1 sc urgency is expressed as. a two 
digit octal number," CA where C is the job ·Class (determined ·by jobcard 
priority and whether the account number is DOE funded·or~not), and A is· the 
age of the job (determined by.the·time in the system-). ··This two digit number, 

·. urge.ncy, is. used to determine the order in which jobs are sent on to the 7600. 
1he same ·general scheme is used for 6000 jobs. Once the job 1 S urg~ncy is 
determined (by ·the method described above), the'.6000 scheduler can determine 
which jobs to initiate. 

The C parameter·used in determining urgency is determined from Table 6.2. 
The A parameter is assigned on the basis of the maximum number of hours the 
job has been in the systeni, as shown .in Table 6.3. . 

6.2.2 .. 1 .2 Resource Allocation During Execution at LBL 

Each executing job in the.7600 and 6000s is assigned a job slot identi­
··fier called a control point. The 7600 has 127 control ooints and the 6000. 
system has 63. This limits the total nuniber of jobs that may be executing 
at any cine time: · · 

The scheduler attempts to optimize throughput (jobs completed per unit 
time) by having as many jobs as possible doing things at once. Thus, for 
instance, a job which is expected to start some I/0 in a short while is given 
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Table 6.2 Input Queue Classes (C Parameter) 

NON-DOE DOE 
JOB CARD PRIORITY FUNDED FUNDED 

DEFERRED (2-4) 1 2 
NORMAL (5-7) 3 4 
RUSH (10-16) 5 6 
INSTANT (5-16 & <= 63 CUs) 7 7 

Table 6.3 Age Computation for Input Queue (A Parameter) 

~1AXIMUM HOURS IN SYSTEM A 

LESS THAN 1. 0 
1 1 
4 2 .. 10 3 

16 4 .. 
. 18 5 
52 6 

INFINITY. 7 

the CPU in preference to a job which fs expected. to compute for a long time. 
Then the first job can do I/0 while the dther is usi·ng .the CPO. This tends 
to decrease the turn~round time slightly. for the .CPW-bo!Jnd job, but it in­
creases the system throughput dramatically .. The guiding ·principle, again, 
is this: Maximiz~ throughput while allowing for spectal cases~ 

The 7600 and the 6000s basically schedule memory occupancy and CPU use. 
Jobs in main memory that are ready for execution may' be rolled out to disk if 
a: job of higher urgency needs the memory space. Jobs waiting for some device 
or staging also maj be iolled out to disk. The stheduler queues them for roll­
in when they are ready to run and their urgency is sufficiently high. 

The urgency for L01 occupancy (see scheduling formula below) includes a 
factor.for computing units (CUs) remaining until the.CU limit. The job with 
the highest urgency (the primary job) is the one put in LCM first. If the 
job in SCM needs to reference the disk to reload or empty an LCM buffer, it 
is swapped 6ut to LCM. Rollout to disk occurs when a job attempts to stage~ 
or when another j6b has a higher urgency for LCM occupancy. Job initiation 
occurs when a job in the input queue has a higher u~gency than one of those 
in LCM or when there is no executing job which is ready to use the CPU. 
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The factors in the urgency for CPU use are CPU burst time, CUs remaining 
to CU limit, and field length. The last two factors are' relatively unimpor­
·tant. Urgency for roll in/out includes factors for devices ·attached and 
field length where lengths of 160,000 bytes are used in considering field 
length. 

Executing interactive jobs receive speci a 1 urgency cons i der:-ati ens: when-
1ever they are in any queue. 

The operators can increase or decrease an· executing job's u·rgency'. This 
is done by an entry at the_oper:at.or .COt:lSO.le, an.d. is subject only to the opera­
tor's discretion. The phrase used to describe this is ''forcing a job". 

The 1 ength of the f1le is a primary factor. in the urgency for processing 
queued files .. Secondary to length is the jobcard priority and the age factor 
of the job. Only wh~h the jbb:has been in the qu~ue-for_a long time will the 
priority or age factor over-ride the length factor. The·order of processing 
is always subject to operator ·intervention. 

6.2.2.1 .3 Scheduling Algorithms at LBL 

On the 7600, there may be six jobs in LC~~ at once. The scheduling 
priority, P (or -- the urgency for LCM occupancy) of a job is a single integer 
calculatedas follows: · 

P = K + FORCES + D + B*AGE - E*(LOG2(CUR}) + (DOE BONUS) 
-(DISK PENALTY).- (LCM PENALTY) + (RUNNING BONUS)--: 
+(DISK ALLOCATION BONUS) + (INSTANT BONUS) 

Each job-. belongs to one of the following four cl~sses ~--·rush, ·norni~l, de­
ferred, and background. ··or th.e various parameters in the algor,-1thll), only',A, 

. B, and C are cl as$ dependent, A 11 the terms a'bove are expressed i'n. terms of 
an effective· age (in ini.nutes)' .. The priority fo·ra job is essentially Uiat' 
age at which its effective age is the highest· in the machine. · 

The following .is a de,finition o·f each term in the expre?sion for P: 

K 

FORCES 

D-

B 

'-
A constant chosen to make. P pes iti ve in all .cases~ 
... are applied by the operator or ·the system in · 
order to move a job above all competition. The 
system automatically forces certai_n jobs necessary 
for its own i.ntegri ty. · · 

0 for norma 1 j cbs, 240 ( 4 hours·) fo.r rush j cbs, 
~10,000 for deferred jobs (they can-never compete 
with nbrmal or rush.jobs) and -20,000 .for b~ck­
grounct' j cbs: 

... ·is 1.2 for rush, 110 for normal, and'0.8for 
deferred. 
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AGE 

E 

CUR . 

OOE BONUS 
i 

DISK PENALTY 

LCM PENALTY 

RUNNING BONUS 

OI SK ALLOCATION 
BONUS 

. INSTANT BONUS 

. The time in. minutes since the job has entered the 
queue. It can reach a maxi mum' of 4095 minutes 
(2.5 days). 
60 minutes for all jobs. 

.CUs remaining tb CU limit. (NOTE: -C*(LOGZ(CUR)) 
gives shorter jobs better turnaround. Each factor 
of 2 jn CUs is worth 60 minutes for all jobs. This 
LOG2 dependence, though not a fine enough mapping, 
provides a reasonable means to reward short jobs 
and at the same time not penalize large jobs exces­
siv~ly (as would be the case, e.g., with linear 
dependence). 

90 minutes. Given to jobs with DOE account 
numbers. 

Reflects the fact that users who specify more than 
10,000 sectors· will cause a dramatic increase in 
system staging. It is 180 minutes. 

Reflects the fact that a job that uses too much 
·LCM reduces system throughput·by keeping other 
jobs out. The current value is MAX[(TOTAL LCM-
600K)/l0K, 0] minutes.· . 

1024 minutes awarded to a job in LCM since it need 
not be· rolled in. · · 

180 minutes awarded a job which is using a lot of 
disk and, thus, 11 paying 11 the disk penalty assessed 
on its disk space requ~st. 

450 minutes awarded to a job which can be finished 
in about 30 seconds or less so as to reflect the 
efficiencies caused by the subsequent release of 
its resources. 

The ·central processnr is scheduled by assigning it to the least cp~­
bound job available. Thus, the single highest priority job is chosen first. 
Then the highest priority job which will 11 fit 11 with the first is chosen, 
followed by the highest which fits with the other two, etc., until no more 
jobs can fit or the maximum of 6 jobs manageable by the system is achieved. 

LCM space available. will almost always be the factor limiting the 
number of jobs running. It turns out that maximum throughput is achieved by 
slightly overcommiting the CPU. 

6.2.3 CDC Host Utiliza~ion Considerations 

Data on this subject were the most difficult to acquire. The following 
general facts do hold across CDC hosts. Host utilization varies by time of 
year, week, and day. In late August and early September, i.e., at the end of 
the fiscal year, host utilization increases as users seek to exhaust their 
computer usage budgets. During the Thanksgiving, Christmas and other 
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holiday seasons, host utilization drops off. Weekly host utilization tends 
. to be at its lowest· on weekends except for system maintenance and software 
upgrades. 

The most significant. indicator of.host availab·ility as a function of 
host utilization is therefore the variation in system load during weekdays 
not falling in a holiday season or toward the end of the fiscal year. From 
this standpoint, we gathered the following particulars from some of the CDC 
hosts. Others were·unwilling to release such information. 

• LBL 
The Dep~~tment of Energy is the preferred LBL user and is 
given priority over ~ll others, deadlines not withstanding. 

Prime time shift: 9 a.m. - 5 p.m. The hQst machines are 
operating at or near the 83% utilization maximum. aetween 
10 and 12 a.m., there are approximately 5 users awaiting 
interactive servite. · 

Non-prime time shifts. An. average of 10% of host machine 
capacity is available. Interactive response is rapid and 
batch jobs encounter only short delays. Caveats: Large 
accounting and en vi ronmenta 1 measurement jobs are run between 
the hours of midnight and 2 a.m. and maintenance and house­
keeping procedures are run on one but rarely both of the 
6000 ·series machines at around 6 a.m. which leads to some 
degrading of interactive response time and some increase in 
batch job delays. 

-~ NSWC-PL 
Interactive services are available only between 7:30 a.m. 
and .9 p.m.· . 

-- As with LBL, interactive lines are "saturated" .around ll a.m. 
and·again around 2 p.m. 

The highest priority jobs encounter a delay of no longer 
than 45 minutes, the second highest prfority jobs are de­
layed no longer than 90 minutes, and the third highest 
priority jobs are delayed no more than 2 hours. 

6.2.4 CDC Host Job Bi11ing Considerations · 

The ARPANET liaison and software systems personnel- at LBL have ~rovided 
us with excellent documentation on their job billing algorithms, policies and 
procedures. LBL 1 S hardware configuration include~ a CDC 7600, 6400 and~600 
and is therefore similar to configurations referred to in certain STE utili­
zation studies discussed below. In what follows, we· present the job 
accounting algorithm at LBL and apply it to the findings of the utilization 
studies. 

6.2.4.1 LBL 1 s Job Accounting Algorithm 

Jobs run on the CDC 7600 at LBL average $800 per real~time hour ~sed. 
Those run on the 6400 and 6600 machines average $200 per real-time hour. 
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These figures are fairly representative of ut_il i zati on costs across CDC 
ARPANET system hosts. 

Job billing at LBL is determined by a basic charge for system services 
plus an overhead rate computed on the basic charge as follows: 

TOTAL JOB COST = (1 + OVERHEAD) * AUs 

where OVERHEAD = 40.5% and 

TOTAL JOB AUs.= W * [J + (CUs * P)] 

An AU (accounting unit) is $.035, and the CUs (''computing units", see below) 
measure job CPU time, I/0 activity, terminal connect time, memory usage, tape 
mounting and materials charges. Pis a priority factor dependent on user 
specified job priority and day of the week as follows: 

.(priority 2-4, "deferred"), weekdays .75 
(priority 2- 4, "deferred"), weekends/holidays .50 
(priority 5-7, "normal") 1.00 

·(priority 10-16, "rush") 2.00 

W depends on the day of the week and target machine on which the job runs as 
follows: 

6000s, weekdays 
6000s, weekdays/holidays 
7600, weekdays 
7600, 2 day weekends/holidays 
7600, 3+ day weekends 

. 1. 00 
.50 

1 .00. 
.75 
.50 

J is a job initialization charge dependent on the target _machine: J=lO for 
the 7600 and J=2 for the 6000s: NOTE:. Running a job in two halves· increases 
its overhead costs. The number of CUs per·job run on the 7600 is determined 
by the following algorithm: · , 

7600 jOB tus = 3 * (CP + ss) + . 5 * BLD .+ ITO -f ·sTAGING 

Where CP is the amount of CPU time used by non-system related activity in a 
job step, SS is the .number of "system seconds" spent in system monitor opera­
tio~s, BLD is the number of large core buffer loads in the job, staging is 
the cost associated with job· step preparations, and ITO, an "interference to 
others" measure, is given by the formula 

ITO= [4 * MAX(l.2*CP,BLD/3) - (3 * CP + BLD/2)] * LCM/4,000,000 

For the 6400 and 6600 at LBL, we have: 

6000 JOB CU~ .= (M*CP+20*KMR) * (l+CM/32768) + (lO*MT) + (5*AT) +TTY 

Where M=.7 for the 6600, M=.4 for the 6400 (6600 speed= 1.75*6400 speed), 
KMR is the number of operating system monitor requests in thousands, CM 
measures the "instantaneous" field length (dynamically variable), MT is the 
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number·of tapes mounted by a~ operator, AT is the number of tapes mounted 
automatically, and TTY is the number of CUs charged for terminal connect~ 
time depending, as follows, on time of day and connection origin: 

10 a.m. 
6 a.m. 

midnight 

- ·6 a.m.-
- 10 a.m., 6 p.m. - midnight 

6 a.m. 

6.2.4.2 Estimating STE Job Costs at LBL 

· lCU/connect min. 
.5CU/connect min. 

.25CU/connect min. 

x 4 for 
ARPANET 
connection 

STE uti 1 i zati on of CDC ARPANET has ts satisfying th.e. hardware/software 
environment requirements summarized in Appendix A can be modelled directly in 
terms of .the results·of STE tool utilization studies presented in.Parag.raphs 
4.1 and 4.2. Giv.en the billing algorithms used· at a representative CDC bast 
such as LBL, the .utilization study provides a mode] cas~ of.STE job ~ost · 
estimation for CDC hosts with similar hardware/software configurations. 

6.2.4.2.1 REVS File Transfer· and Storage Costs 

In this section, we discuss the costs associated with the transfer and 
storage of mass storage files for the different phases of REVS operations. 
The first cost'we consider is for transferring files over the ARPANET via the 
File Transfer Protocol (FTP) .. Most ARPANET hosts do not charge for the:use 
of an FTP connection but only for the use of interactive connections~ The 
use of FTP ~hannels therefore involves only those costs that result in opera­
tions on the host•s file system, e.g., allocating, opening, closi·ng files to 
be FTPed. These costs are of the same scale as those associated with the 
intended file activity for the various REVS operations.· We therefore discuss 
the costs associated with file activity in REVS operation~. 

Each REVS phase makes use of several mass storage files. The largest 
o¥'thes~ will d~termi.ne the costs associated wi~h REVS fi]~ storage sine~ the 
LBL. poljcy for storage charges involves a. cost of $1.50 per 5500 word ~egment 
(program storage ~ll~cation unit, PAU) assessed ·an the m~ximum numbe~ of.PAUs 
in use during a given month. Since the greatest REVS file activity originates 
in batch jobs, we may safely assume that this .cost will be determined by the 
largest file ~ssociated with a job in a ~iven phase of REvs· operations. The 
associated cost for each such phase is detailed ~s follows: 

LARGEST MASS STORAGE FILE 
Instal.lati on Phase 
Production Phase 
Application Data Base 

~ 

SIZE (WORDS)_ 
277,929 
616,080 

200K - 450K 

. COST MONTHLY)· 

$ 75 .. 80 
$168.; 02: 

$54.55 to $136.00 

Assuming that the production phase of REVS operations proceeds during 
the same month that REVS is installed, the $168.02 charge for the largest 
production phase mass storage file will dominate the storage costs through 
that pertod. There ~re, of course, mino~ charges associated with. mounting 
and entering the files into the LBL_PSS library, but not of the same scale . 
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6.2.4.2.2 REVS Installation Job Costs 

The results of the REVS ·utilization study indicate the running of up to 
52 separate jobs during the installation phase. The following data were 
accumulated during R~VS installation: 

CDC 7600 CPU SEC. 
minimum 0.6 
ma·ximum 304.0 

total . =604. 0 

I/0 MWORDS 
minimum < .01 
maximum 2.74 

· total >14.54 

We make two assumptions about jobs run at LBL which are borne out by repre­
sentative samples. First of all, a rate of 40 BLD CUs per I/0 megaword 
involved in a job is·assumed ~nd, secondly., a job STAGING factor of .034 
times the total BLD CUs accumulated. Form this standpoint, the cost of 
installing REVS at LBL would be: · 

TOTAL (across jobs). AUs = (l + .405) * AUs 

where 

AUs = 1.00 *[52* 10 +(TOTAL JOB CUs * l .00)] 

assuming for the wars t case a W factor of 1.00. We then have · 

TOTAL JOB CUs = 3 * (CP + SS) + .5 * BLD + ITO + STAGING 
= 18.2 + 300 + 1000 .+ 20 
= 3132 

hence we have 

TOTAL AUs = 1.405 * 3652 = 5130 

which yields 

TOTAL INSTALLATION COST $180.00 

Note that this installation cost estimate assumes that installation 
phase jpbs tend to b'e CPU bound, a favorable characteristic from the stand­
point of job scheduling at LBL and, presumably, other COC hosts. Our assump­
tion of 40 BLDs per megaword of I/0 may be over conservative. If not, tuning 
the I/0 parameters of REVS could feduce this cost factor so as to accord with 
the above results. The installation estimate is based on a scenario in which 
the installer operates via a remote connection to LBL over the ARPANET and 
transfers files to and from LBL via FTP for batch job submission an'd local 
spooling of results to a lineprinter. This justif~es the otherwise minimal 
STAGING cost associated with the interactive prep~ration of job streams. 

6.2.4.2.3 REVS Production Phase Costs 

Paragraph 4.1 details the results of a typica1 REVS project on which 43 
jobs were run over a· nine week interval. Individual ruris varied from four to 
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twenty-seven seconds and involved an application data base growth from 224 
Kbytes to 472 Kbytes. If we assume that CPU seconds account fO\' about a 
fifth of the total CUs accumulated by a job, as in the installation phase, 
we have the following cost estimates for the production phase REVS runs, by 
day: , 

DAY RUNS/DAY CUs/DAY AUs/DAY COST/DAY 

1 2 100 120 $ 4.20 
2 8 500 580 $ 20.30 
3 -2 175 195 $ 6.20 
4 1 50 60 $ 2. 10 
5, 3 275 305 $ 10.68 

.6! 5 225 275 $ 9.63 
·i 1 150 . 160 $ 5".60. 
8 . 3 270 300. $ 10.50 
9 1 110 120 $ 4.20 

10 . ' 6 450 510 $ 17.85 
11 1 90 100 $ 3.50 
12 4 390 430 $ 15.05 
13 3 175 405 $ 7. 18 
14 3 425 455 $ 15.93 

TOTAL ESTIMATED COST. = $135.93 

6.2.4.2.4 PERCAM Job Cost Estimates 

The two PERCAM utilization studies contained in Paragraph 4.2 would 
entail estimated costs at LBL for comparable PERCM~ operations as shown in 
Tables 6.4 and 6.5. 

6.2.4.2.5 AUTOIDEF Job Cost Estimates 

There are no sufficient utilization studies available for p~rposes of 
estimating the costs involved in AUTOIDEF operations at CDC ARPANET host con­
figured along the lines of LBL. 

6.3 ·NON-CDC ARPANET HOSTS PARTIALLY EVALUATED BY TRW 

~rel imi nary studies indicate that severa 1 classes of ARPANET host 
. machines are adequate to the hardware requirements for combined CPU speed 
and.I/0 rate imposed by the STE, These include the IBM 370/158 ahd higher. 
series and the Univac 1100/40 and higher series. ~e also consider DEC VAX· 
11/780 ARPANET hosts in this ~ection, but this machine is considered unde~ 
Task 3 for starid-alone STE operations as well . 

." I • • 

6.3:1 Hardw~r~/Software Functional Requirements 

The hosts shown in Table 6.6 are presented in terms of the degtee to 
which they satisfy the further software/hardware requirements . 

. UCLA-CCN and ANL are both large IBM multi-processor hosts with more than 
. adequate hardware/software configurations for STE. operations. ANL supports 
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Table 6;4 PERCN, Study Number One Cost Esfimates (LBL) 

e 20 ATTACKERS VERSUS ONE DEFENDER 
1 TWO MAN-WEEK EFFORT 

-- ONE WEEK FOR THE LEARNING {URVE AND EVENT LOGIC TREES 
-- ONE .WEEK FOR COMPUTER RUNS AND DOCUMENTATiON 

COST ESTIMATES 

CHECKOUT PHASE RUN NO; CPU SEC. COST 
1 11.445 $2])0 
2 20. 161 $ 3.53 
3 20.133 $ 3.52 
4 20.720 $ 3.63 
5 20.019 $ 3.85 
6 21 . 199 $ 3.71 

' 7 22.582 $ 3.95 
SUBTOTALS ' 138.259 $24.20 

STUDY PHASE 
8. 22.210 $ 3.89 
9 22.080 $ 3.86 

10 22.005 $ 3.85 
11 22.023 $ 3.85 
12 21 . 722 $ 3.80 
13 21.687 $ 3.80 

·SUBTOTALS 131.259.· ' $22.97 

TOTAL 7600 SECONDS ~ 270 

TOTAL COST STUDY ONE = $47.00 
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Table 6 . .5 PERCAM Study Number Two Cost Estimates ( LBL) .. 

'. 

• 18 ATTACKERS VERSUS 20 DEFENDERS 

• FOUR MAN-WEEK EFFORT 
~~ TWO WEEKS FOR. MODULE BUILDING 
--ONE WEEK FOR MODEL.VERIFICATION 
-- ONE WEEK FOR PARAMEtRIC AND SENSITIVITY ANALYSIS 

COST ESTIMATES 

MODEL 'BUILDING RUN NO. CPU SEC. COST 
1 8.492 $~9 
2 10.318 $ l. 81 
3 16.191 $ 2.83 
4 16.382 $ 2.87 
5 4.599 $ .80 
6 18.918 $ 3. 31 
7 20.567 $ 3.60 
8 20.381 $ 3.57 
9 16.701 $ 2.92 

10 38.583 $ 6.75 

SUBTOTALS 170.072 $29.76 

VERIFICATION 
11 22.219 $ 3.89 
12 20. 719 $ 3.63 
13 20.917 $ 3.66 
14 11.911 $ 2.08 
15 12.675 $ 2.22 
16 22.435 $ 3.93 

SUBTOTALS 110.876 $19.40 

P&S ANALYSIS 
17 50.271 $ 8.80 
18 41.235 . $''7. 22 . 
19 41.404 $ 7.25 
20 42.746 $ 7.48 

SUBTOTALS 175.646 $30.74 

TOTAL 7600 SECONDS = 457 

TOTAL COST STUDY TWO = $80.00 
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Table 6.6 Noh-CDC ARPANET Host Evaluation 

GOOD MARGINAL UNACCEPTABLE UNDETERMINED 

UCLA.:.~CN,CCA 
PER CAM NOSC-CC,NWC, LL DTI 

ANL,NUSC 

UCLA-CCt~, CCA, 
AUTOIDEF NOSC-CC,NWC, LL DTI 

ANL,NUSC 

RSL/REVS UCLA-CCN,CCA, NOSC-CC,NWC, · 
LL DTI ANL NUSC 

... 

only 1200 baud communications with ARPANET users but is willing to upgrad~ 
this aspect of thei-r communications configuration to the requirements of a 
cost effective long term (=5 year) ARPANET software project. Both hosts can 
offer the new IBM Pascal compiler in their system libraries for purposes of 
REVS development. LL uses an Amdahl 470/V7 processor running under VM/370. 
an IBM type sys tern, but does· not sup port software development b~ 1 non-1 oca l 
ARPANET users. . 

CCA, DTI ·and NUSC use DEC VAX ll /780 processors but, whereas NUSC runs 
the DEC VMS operating system, CCA and DTI run Paging UNIX (U. C.-Berkeley, 
v.32). VMS supports DEC Pascal, an implementation already used in one· REVS 
installation. Paging UNIX, however, does not as yet support an adequate 
production quality Pascal compiler. ·The NBS Pascal compiler, originally · 
developed in a UNIX environment; is expected to be re-embedded into UNIX 
environments in the ne~r futur~. However, the NBS compiler does not support 
GO TO constructs used by REVS for error recovery. Because of the popularity 
of the DEC VAX, the UNIX operating $ystem, and the Pascal language, it is not 
unreasonable to expect that an adequate Pascal compiler will emerge in the 
near future. The availability of such a compiler is presupposed in our rating 
CCA a good STE candidate. DTI's status is uncertain because~ as yet, it has 
no interface to the ARPANET that supports the necessary file transfer opera­
tions. NUSC has been rated marginally adequate because its VAX has a minimal 
main memory size (1 megabyte). 

There is a widespr~ad belief that Paging UNIX does not compare favorably 
with VI~S as a VAX-hosted virtual memory operating system. ·In fact, this was 
the case with the initial versions of Paging UNIX which were more concerned 
to exploit the transportability of that system than to tune its interfaces to 
the VAX architecture. The paging performance of the latest version of Paging 
UNIX is within 10% of VMS's. It must be pointed out, however, that an unknown 
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~egree of modification may be necessary to adapt REVS to interface with UNIX. 
Adaptation to VMS has already been done. 

NOSC-CC and NWC both use Univac processors. Both have sufficient 
main and secondary memory for STE operations and provide Mike Ball's NOSC 
Pascal compiler in their user libraries. This compiler appears to satisfy 
the REVS compiler requirements detailed in Paragraph 2.2.6.1, except that 
DISPOSE is not supported. NOSC runs the Univac 1100 operating system while 
NWC runs the ExEC 8 operating s,Ystem. Both operating systems have the func­
tionality and utilities required for STE operations. However, the sHes 
are 1 is fed as ma rgi na 1 for REVS support because of the need to modify the 
NOSC compiler. A compiler developed by the University of Copenhagen (Denmark) 
may"be an acceptable alternative, but is not curren~ly supporte~ at any site. 

I • 

6.3.2 Non-CDC Host Processor Slowdown Ratios 

The desired slowdown: ratio for STE hosts should be no worse than fifty-five 
to one relative to the canonical CDC 7600 fnstallation at the BMDATC ARC. TRW 
has produced benchmark studies which compare the makes/models of the non-CDC 
hosts presented above. The performance comparisons are made in terms of a 

· we·ighted· measure of CPU speed and I/0 rate. ·The following is a summary of 
the results of these studies and conversations with TRW systems personnel 
well-versed in the characteristics of the host machines: 

HOST MACHINE 

.· IBI~ 3033 
Univac 1100/82 
Univac .1110/40 
DEC VAX 11/780 

HOST:CDC 7600 SLOWDOWN RATIO 
<3: 1 
<6: 1 
<9: 1 
7:1 on MIPs alone~ I/0 is known 
to increase this greatly . 

.. , This information,·whi.le it:~fonnative for bounding the slowdown ratios, 
takes int6 consideration n~ither STE-specific operations nor host processor 
efficiencies available to them. · · · · 

6.3.3 . Host Utilization Considerations 

. , The· fo'1' 1 pwi ng pa rti cu l a rs have. been gathered from inputs. provided by 
non~coc host .user service personnel. ~he general points ~bout host utiliza­
tion variations with time of year, day and week apply to non-CDC ARPANET 
hosts as well. 

1 CCA 

t AI~L 

As much as· 50% of the system capacity is available on 
the average· day. 

The processors always ·have some excess capacity. 

One or two more interactive users could be accommodated 
during the day. 
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T_he batch system saturates "softly;' in that it can 
iccommodate small j6bs (500 Kbyte + 10 CPU sec) jobs 
at any time. 

6.3.4 Host Job Scheduling and Billing Considerations. 

To date, there is no model studY 6f STE utilization for non-CDC ARPANET 
system host machines otherwise adeqiJate for the requirements imposed by the 
STE. In these cases, given a~ account of the job billing algorithm, policies 
and procedures of a representative non-CDC host and the tolerances in perfor­
mance slowdown of a given host relative to th~ canonical CDC 7600 installa-
tions of the STE, we can still bound the job costs associated with STE 
operations at the host. , · 

ANL systems personnel have provided us with an account of user service 
rates in effect since the end of July, 1980 .. ·These rates Will b~ increased 

by fifteen percent some time in November, 1980. The precise billing and 
scheduling a 1 gorithms were not provided although the service rates give a 
good measure of STE job costs based on the utilizationre.sults of Section 4. 

In this section, we present the service ~ates of interest to STE opera­
tions at ANL, .estimate the costs associated with the jobs recited in our 
discussion of STE job costs at LBL, and conclude with·a summary of the job 
schedu 1 i ng parameter breakpoints of importance to STE operations. Note that 
our approach assumes that s·rE performance at" ANL wi 11 be comparable to STE 
performance at LBL. -This is not as u~~ealistic as one·might at fifst think 

. because' the CDC 7600 and the IBM 3033 processors are actually closer to one 
another in performance than our "worst case" s 1 owdown ratio presented in the 
last section would suggest. · · · · 

6.3.4.1 ·ANL Service Charges of Interest to STE Operations 

INTERACTIVE SERVICES 
CHARGING PRIME NIGHTS AND 
UNIT TIME ' WEEKENDS 

CMS (IBM 3033) 
Hour Session Time $ l. 20 $ 0.54 

CPU Time Hour 240.00 .108.00 
Disk 1/0 .EXCP. 0.0006 0.00027 

· Storage Kilobyte 0.282 0.1269 
Occupancy Hour. 
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WYLBUR (IBM 3033 and 370/195) 
Session Time Hour 
CPU Time Hour 
Disk I/0 EXCP 

$ l. 20 . 
240.00 

0.0006 

BATCH SERVICES 

OS/MVt and ASP IBM 3033 and 370/195) 
CPU Time* Ho~r lio.oo 
Wait Time* Hour. 60.00 
Core x Kilobyte 0.141 

CPU TIME*.. .. Hour. 
Per bob Surcharge· 0.15 
Lib,rary Tape Tape 0.50 
. Setup** 

Personal Tape Tape 0.75-
-Setup** 

Disk Setup** Disk .1. 50 

$ 0.54 
108.00 

0. 00027 
. _,~. 

Note that the term "EXCP refers to an I/0 block (approximately 16BO to 3120 
. bytes) trans.fe:. EXCPs involve a worst case "wait time" of 35 milliseconds. 

Batch Priorityl"1ult·ipliers 

Items marked * above have the number of charge units multipl.ied by the 
p~iority factor for the priority chosen for the job; thos·e m~r~ed by ** are 
multiplied for Top priority only .. The priority multipliers are: _' 

PAPER 
Calcomp 580 
Calcomp 780 
Calcomp 936 
Versatec 

Top 
High 
Norma 1 
Low 
Standby 

·zero 

3.0:: 
1.5 
1. 0-

··. 0 ~ 9 
0.8 
0.8 

GRAPHICAL OUTPUT 
'· 

JOB 
v.oo 

2.50 
4.50 

·None 
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HOUR. 
$430• 

4;50 
7. 50. 

None· 

: • FOOT 
. $.04 

.04 

. 14 

. 14 

.. ·' 

·. •; 



DIRECT ACCESS STORAGE 

CHARGING UNIT RATE 
Permanent Disks (PERM) Track Day $ .00354 
Temporary Disks (TEMP) Track Day .00191 
Timesharing Permanent Track Day .Oll58_; 

Disks (TSPERM) 
Timesharing Temporary Track Day .00354 

Disks (STEMP) 
Permanent 2314 Track 

Disks (LONG2314) 
Day .00648 

Database Disks (DATABASE) Track Day .00458 
CMS Virtual Disks (MINIDISK) . Megabyte Day .24000 
Timesharing Database Track Day .01610 

Disks (TSDATA) 
Migration Disks Track Day .00229 
Data Cells Track Day .00048 
Storage of Setup Disk Disk Month . 13.00 
' ' 

CMS Minidisk Restore CMS ~~inidisk l. 30 

MAGNETIC TAPE SERVICES 

Tape Storage Tape Month $ .65 
Tape Save Request Request 2.50' 

Processing 
ijithdrawal of New Tape Tape 25.00 

from AMD Stock 
Withdrawal of Tape from Tape ·25.00 

AMD Library 
Use of Tape to Send Expired Tape 25.00 

Datasets to User 

ARPANET USAGE CHARGE Hour $10.00. 

6.3.4.2 Estimating STE Costs at ANL 

As in the case ·of STE job cost estimates at LBL, we consider REVS and 
PERCAM costs. For REVS, we consider file storage charges as well as instal­
lation and production phase costs as determined by the utilization results 
of the Interim Report. 

6.3.4.2.1 REVS File Storage Costs at ANL 

Assuming that the installation phase requires a week and that. approxi­
mately 3.35 megabytes of mass storage fi1e .space ·is required, we arrive at 
the following charge given the ANL rate of $.24 plr megabyte· per day: 

REVS INSTALLATION MASS STORAGE CHARGE 
= 3.35 X 7 X .24 
= $5.60 
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The production phase mass storage files require approximately 12 mega­
bytes' of disk space, which yields a charge of: 

REVS PRODUCTION MASS STORAGE CHARGE 
= 12 X • 24 

· = $2.90 per day 
= $87.00 per month-

The databases (up to 16 of them at an STE site) use~ in REVS applications 
each require between 1.5 and 4.5 megabytes of mass storage, which yields: 

.REVS APPLICATION DATABASE CHARGE 
=> 1.5 x .24 = $.36 per project per day 
<= 4.5 x .24 = $1.08 per project per day 

6.3.4.2.2 REVS Installation Charges at ANL ~;. 

G~ven the .service rates presented in the previous section, we can esti­
mate the cost of installing REVS at ANL as follo~s, assuminq a better than 
worst case·, 1:1 slowdown ratio for the ANL IBM processors relative to the 
CDC 7600: 

.SERVICE. UNITS # UNITS RATE CHARGE --

CPU Time Hour . 1667 $120.00 $ 20.00 
Wait Time Hour . 5 $ 60.00 $ 30.00 
Core· X. Ki 1 obyte 170.6 7 $ .0. 141 $ 24.06 

.CPU Time Hour 
Core x Ki 1 obyte 512 $ 0. 141. $ 72.19 

~~ai t Time Hour 
Per Job Surcharge Job . 52 $ 0.15 $ 7.80 

TOTAL = $154.00 

Here we have assumed job resource requests of normal pri ori.ty, one megabyte 
of main memory, and a 35 millisecond per EXCP of memory wait time. The key 
utilization data, you will recall·, were 604 CPU seconds, 14.54 megawords 
f60..:bit: word)·of -I/0, and 52·separate jobs spanning a period of 5. work days-. 
Note that this figure is comparable to our result for the STE. installation 
charge at LBL. 

6.3.4.2,3 REVS Production Phase Costs at ANL 
I 

As 1our results suggest, we assume that a fifth of the total charge for a 
given STE job is· due to the CPU time: charge. This yields the followin~ 
breakdown bf job costs for the REVS production phase jobs presented in Para­
graph 4.1. 
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DAY RUNS/DAY - CPU SECS. COST/DAY 
·' 

1 2 20 $ 3.63 
2 8 100 17.87 
3 2 35 6. 13 
4 1 10 1. 82" 
5 3 55 9.62' 
6 5 45 8.25 
7 l. 30 . 5.15 
8 3 54 9.45 . 
9 1 22 3.82 

10 6 90 15.90 
11 1 18 3.15 

. 12 4 78 13.60 
13 3 35 4.62 

. 14 3 85 14.62 

TOTAL $120.00 

Thi~ estimate is ~lso comparable to the REVS production phase/cost estimates 
at LBL. 

6.3.4.2.4 PERCAM Job Cost Estimates at ANL 

The two PERCAM utilization studies contained in Paragraph 4.2 present 
the results of PERCAM job runs i~ CDC 7600 CPU setonds. Assuming a 1:1 
slowdown ratio for· the A~L IBM processors relative to the CDC 7600 and 5:1 
total ~CPU~time charge ratio, we have the cost estimates for PERCAM runs at 
ANL sho~n in Table~ 6.7 and 6;8. 

6~3.5 Job Scheduling Parameter Considerations at ANL 

We have already mentioned that "sman~~· batch: jobs at ANL are those 
which request less thanlO seconds of CPU time and less than 500 kilobytes of 
main storage. Small jobs will be run during prime time, hours although they 

, will encounter some delay. Some important breakpoint values for CPU time and 
main memory are as follows: 

. QUEUE 

Express 

.. variable 

Standby 

CPU TIIVIE 
<= 2 min. 

<= 15 min. 
> 15 min. 
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<= 250 Kbytes. Top 
<= 650 Kbytes. High 
<.= 1 500 Kbytes . Norma 1 
<= 2 Mbytes. Low 
<= 3 Mbytes Standby 
> 3 Mbytes. Zero 
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Table 6.7 PERCAM Study Number One Cost Esttmates (A~L) 

o 20 ATTACKERS VERSUS ONE DEFENDER 
o TWO MAN-WEEK EFFORT 

-- ONE WEEK FOR LEARNING CURVE, EVENT LOGIC TREES 
~- ONE W~EK~FOR COMPUTER RUNS AND DOCUMENTATION 

COST ESTIMATES 

CHECKOUT PHASE RUN NO. CPU SEC. . COST 
1 11.445 $1.91 
2 20. 161 $ 3.36 
3 20.133 $ 3.36 
4 20.720 $ 3.45 
5 . 22.019 $ 3.67 
6 21.199 $ 3.53 
7 22.582 $ 3.76 

SUBTOTALS 138.259 $23.04 

STUDY PHASE 8 22.210 $ 3.70 
9 2'2.080 '$ 3_.68'· . 

10 22:005. $ 3.67 
11 22 .. 023 $· 3.67' 
12 iT. 722 .. $ 3.62 .. 

13 21.687 $ 3.61 
. SUBTOTALS 131 .. 259 $21.90 

TOTAL ANL CPU .SEC~ = 270 ·. 
.. 

TOTAL COST STUDY ONE ~ $45.00· 
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Table 6.8 PERCAM Study ~fumber Two .Cost Estimates (ANL) 

1 .18 ATTACKERS VER.SUS 20 DEFENDERS 
1 FOUR MAN-WEEK EFFORT 

-- TWO WEEKS FOR MODULE BUILDING· 
--ONE WEEK FOR.MODEL VERIFICATION 
--ONE WEEK FOR-PARAMETRIC A~D SENSITlVITY AN~lYSIS . . ~· 

COST ESTH1ATES 

MODEL BUILDING RUN NO. CPU SEC. 
1 ·. 8.492 
2 10.318 
3 16. 191 
4 16.382 
5 4.599 
6 18.'918 
7 20.567 
8 20.381 
9 16.701 

10 38.583 
SUBTOTALS 170;072 

VERI FICA TION 11 . 22.219 
12 20.719 

.13 20.917 
14 .·.· ·ll.9il 

. l.5. . 12.675 
·16 22.435 

SUBTOTALS· -110.876 

P&S ANALYSIS 17 50.271 
18 . 41.235 
19 41.404. 
20 . 42.746 

SUBTOTALS 175.656 

TOTAL ANL CPU SECS = 457 · 

TOTAL COST STUDY TWO = $76.00 
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COST 
$ ----,-:Ll2 
$ l. 72 
$ 2.70 
$ 2.73 
$ .77 
$ 3.15 
$ 3.43 
$ 3.40 
$ 2,78 
$ 6.43 

. $28.50 

.$ 3.70 
$ 3.45 
$ 3.49 

. $ l. 99 
$ 2._11 
$ 3.74 

$18.48 

8.38 
6.87 

. 6. 90 
7.12 

$29.26. 



6.4 HONEYWELL 6180 HOSTS 

The only Honeywel~ 6180 ARPANEf hosts'are'RADC-MUlTICS ind MIT-MULTICS. 
·Both of these h·osts are adequate to the hardware/software requirements of 

PERCAM and AUTOIDEF. However, neither ho~t supports a production quality 
Pascal compiler at present .. Honeyweil plans to release and supp6rt a com­
piler for a language called PYXIS which closely resembles Pas~al but which 
does not meet the requirements imposed by REVS on a candidate Pascal com-· 
piler. Apart from software releases supported by Honeywell, there is no 
certain source of an adequate·Pascal compiler for RADC.-MULTICS and MIT-MULTICS. 
We therefore do not regard either host as ~dequate to STE operations. 

6.5i REVS RUN COSTS AT NADC 

\ Tab 1 e 6. 9 presents run cost and tot a 1 centra 1 processor ( CP) time for 
sel~cted REVS test cases run on the NADC "B" machine during REVS installation 
at NADC in May 1979 .. Comparable execution times on the CDC 7600 at the U. S. 
Army Ballistic Missile Defense Advanced Technology Center (BMDATC) Advanced 
Research Center (ARC) are alsd shown, where available. The NADC configuration 
executes 5 to 6 times slower than· the 7600 .. ·The NADC costs include line 
pririter and service tharges. · 

I . 

I 

! An approximate cost estimating relationship derived from the data of 
.Table 6.2 is: 

COST= $6.50 + $0.42·per CP/sec 

Considering an average 5.7:1 ~)owdown ratio between th~ 'NADC machine and~ 
COt: 7600, we multiplied the CPU times used in the LBL and ANL estimates for 
REVS production runs by 5.7 an~. applied the above c6st rule. The result ~as 
a $1900 estimate for NADC versus $136 and $120 for LBL and ANL respectively. 
Review of the LBL and ANL estimates showed n6 errors that could explain the 
15:1 cost differenti between NADC;and the oth~r sites. However, the NADC 
charges represent total cost, including all peripheral services, and presume 
that servfce costs are roughly proportio~al to CP time. 

The only con-clusive way to· verify the relative cost-s would be to mak~ 
actual REVS runs,or benchmarkru.ns with a s_imilar program (in terms of 
resource usage profne) at LBL, ANL, and NADC.. In the absence of such runs, 
we can only consider the NADC data to be a "high" cost estimate, and the 
LBL/ANL data to be a "low" cost·estimate.' · ... 
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Table 6.9 NADC REVS Costs 

NADC NADC ARC 7600 
TEST CASE $. COST . CP-SEC CPU-SEC 

-

l. RADX TEST DB-ANALYZE DATA FLOW. $43.03 . 90:69 --
2. SAMPLE SIMULATOR (RUN 1) 37.54 88.78 --

3. SAf'llP LE S I MULA TOR (RUN 2) 37.60 33.86 --

4. BUILD NUCLEUS 16.42 9.20 4.55 .. 

5. BUILD TRACKLOOP 57.17 . ll5. 52 20.18 

6. BUILD RADX TEST DB 25.44 45.85 9.43 

7. SAMPLE SIMULATOR (RUN 3) 34.53 86.10 --

8. LIST ALL-BALLOON TRACK lL 74 16.05 3.20 

9. AA TEST 15.42 16.51 3.93 

10. LIST PERivliSSIONS (RADX 3) .5. 98 5. 15 l. 31 

11. LIST RSL (RADX 2) 23.48 40.57 7.84 

12. TRACKLOOP ERROR DETECT (RADX 6) 32. 11 53.42 10.81 

13. TRACKLOOP ANALYZE ALL 22.56 44. 3'4 7.44 

14. TRACKLOOP ANALYZE DATA FLOW 58.09 127.76 21.28 

15. TRACKLOOP PUNCH &. PLOT'(RADX 4) 30.39 . .. 55.70 9.40 

16. BUILD BALLOON TRACK 24.47 44.14 --

17. LIST ALL-TRACKLOOP 23AO 37.17 . 7.63 
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6.6 ARPANET HOST CONCLUSIONS 

As: discus;:;ed in 'the previ'ous paragraphs, there are three CDC ARPANET 
nodes and five non-CDC ARPANET nodes that have sufficient resources to support 
the STE, and ·which either have c:idequ'afe Pascal compilers or could potentially 
be provjded with adequate compilers to support REVS. 

One of the CDC nodes, NADC, already has two STE tools, REVS and PERCAM, 
tnstalled. The addition of AUTOIDEF would not appear to be difficult, pro~ 
vided that the tool is portable, as claimed. The costs of running at NADC . 
may be higher than s·imilar costs at other sites, but this cannot be verified 
with available information. The· other two CDC nodes, BNL and LBL, operate 
with versions of th~ SCOPE operating system, under whic~ REVS was developed. 
However, since thes~ nodes use different versions of SCOPE, and may have 
hidden site dependent features, .installation of REVS at either site may (e­
quire one~half to t~o-mari-years of adaptation effort, depending on the details 
of the operating system. Optimistically, the adaptations would be minimal. 
Adaptatidn to run at nodes using NOS or NOS/BE wo~ld definitely require effort 
at the upper end ofl the range. . 

i I · : . : · · · 
Of the non-CDC[ nodes, ANL and UCLA-CCN have the most powerful capabilities 

and, apparently, adequate Pasc.al compilers. Previously, REVS has not been 
transported to an lBM mainframe, but building on the experience of previpus 
CDC transfers and transport to the VAX ll/780; the job could be a~hieved with 
less than two man~years of effort, 

I 

A simil~r tran?fer could be made to the Univac nodes, NOSC-CC and NWC, 
but the~e are _remairing issues of Univac Pascal comp'iler adequacy. If existing 
compilers have· to be significantly modified to support REVS, the transfer cost 
would ihcrease subs;tantially. 

DEC VAX Tl/780
1 
hosts are just beginning to appear on the ARPANET, and 

severali are contemp1lated. Many of these w_ill run under, the Paging UNIX operat­
ing system, and would require an amount of STE softwa~e modification that 
cannot pe estimated: without a detailed analysis of UNIX beyond the resources 
of this; study. The one existing node operating under the VMS operating system, 
NUSC, is marginal_bbcause of its 1 megabyte memory. Upgrade of the memory 
size to 2 megabytes/ or more would make NUSC an attractive STE site, because 
REVS is being transferred to the VAX ll/780 by BIVIDATC, thus sav·ing adaptation 
costs for~he SfE. · It is· highly p~cibabl~ that many of the popular ll/780s 
will be connected eventually to the ARPANET, and REVS can be readily installed 
on th'ose nodes withj VMS and sufficient memory. Installation of AUTOIDEF does 
not seem to be diffiicult, and PERCAM is operating on the VAX at BMDATC. · 

I . 

The benefits qf using an existing ARPANET site must be weighed against 
the potential disa~Vantages. The disadvantages are: 1) potential lack of host 
availability when n:eeded; 2) inability to tailor the host specifically to STE 
needs; and 3) inabflity to make classified runs without establishing a secure 
subnet -and acquiring Private Line Interfaces (PUs) at $55,000 + per copy. 

I 
' 
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7.0 SURVEY OF ALTER~ATE STE HOSTS 
,· 

This section presents the results- of Task 3 of the STE Study. ·The main 
objective of Task 3 was to survey commercially available, off-the-shelf com­
puter systems, using a mainframe of a type that is being or has been inter­
faced to the ARPANET, with the capability of supporting the STE. A second 
objective was to investigate the security implications of operating the STE 
in a single-level, dedicated security environment. · 

Because the dominant families of large mainframes were effectively con­
sidered under Task 2, in Task 3 we concentrated on high-performance, economi,.. 

. cal minicomputers, and midicomputers. After initial analysis we concluded 
that current 16-bit minicomputers could not atcess the large address space 
required by REVS without unacceptab 1 e performance penalties. Therefo.re, more 
detailed analysis concentrated on 32-bit midicomputer families. The only 
appropriate machines· of this type currently on-the ARPANET are DEC systems. 
For comparative purposes we broade~ed the investigation tb consider oth~r 
major midicomputer systems that might be interfaced to ARPANET in the fu~ure. 

Paragraph 7.1 discusses methods of investigation for Tas~ 3 .. Paragraph 
7.2 summariies features of the systems investigated and'discusses issues in­
volved in the analysis. Paragraph 7.3 presents our rationale for selection of 
the DEC VAX 11/780 as the preferred system. Paragraph 7.4 discusses color 
graphics capability for the STE. Security issues are summarized in Section 8 . 

. 
7.1. METHODS OF INVESTIGATIQN: TASK 3 

Information on the functional characteristics of a wide range of · 
32-bi t midi computers was gathered from TRW's Mini computer and Informa­
tion Technology Laboratory which maintains current data on available 
minicomputer hardware and software .. The criteria used in selecting 
alternate midicomputer host architectures were the same as the hardware 

·and software functional requirements imposed upon candidate ARPANET 
system hosts under·Task 2 except for ad~itional ~onsidera~ion of_stand­
alone and potentially secure.STE operat1ons as d1s~ussed 1n Sect1on 8.0. 
We also cite trends and part1culars that were prov1ded by vendor personnel. 

Among midicomputers,. we selected for initial consideration only 
those which satisfy the following criteria: 

I 

• 

• 

Availability of operating systems which meet the functional 
·requirements for an STE support environment. 
Network Communications hardware/software support within 
such an operating environment for potential ARPANET 
operations. · · I 
Availability of FORTRAN and Pascal compilers within such 
an operating environment which satisfy the translation 
requirements of each tool of the STE. 
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,These criteria significantly reduced the number of candidate host 
machines for stand-alone STE operations. Cost considerations and· the 
availability of potentially adequate Pascal compiler~ limited the class 
of candidates to the follo~ing machines: 

Digital Equipment: VAX ll/780 
.Harris: H800 · 
Perkin ~t~er; · 3~44, (Interdata) 8/32 

·Prime: 750 
SEL: 32/77 

·Other midic6mpufers .a~e known to either lack Pascal compiler·suppdrt or. 
to exceed the CO$t ~f these machines by a large factor. 

7 .,2 CO-MPARATIVE DATA ON ALTERNATE STE HOST MACHINES. 

: Table 7 .1 _presents the. features that -qua 1 i fy ·each. of. the. candidate. 
STE mjdicomputer host machines: 

.-: 

. Table .7 .1 Candida~e_.Midico-~lputer Hosts. 

; 

.MfPS I/0 RATE MB/SEC PRICE W/MBs . - NTW.K COMM 

DEC VAX 8 (massbus); 1.5 (unibus: DECNET 
11/780 L5 .. 13~3 (dma ch.annel t·.· -$225 ,boo 2' 

• < 

... -.(OPTIONAL) . 
Harris 1 (slow device); 19 in, <. < 

H800 2.6 -7.9 out ·(high speed· dev) $183 ;·ooo 1 ' : ,. 

-· 
··. . . . . 

PE 4 DMA Channels.·· .. 'DATUEB 
3244 1.4 . 10 ... 

- 40 MB/Stc· . $169-,000 2 CMS ·coRP. 
' ; ... 

PE < 1 bMA. Chann·e 1 , : :..:_ 
DATUEB 

8/32 2+ 8.3 MB/ SEC $120;000 1 CMS CORP . 
.. 

Prime ! High Speed Device· PRIMENET 
750 i .895 8 input, 5 output $186,000 2 (OPTIONAL) 

: 

SEL High Speed De-vice 3.2: IN HOUSE 
32/77 .98 1 · DMA Channel @ 26~6 M/sec. $110 000 . 2<.3 : X.25+ ' . , .. 

•. 
., 

.. 
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The table does ~ot reflect certain important facts about the candidate 
midicomputer· STE host systems. The available Pascal compiler support for· 
some of them is neither as robust nor as field proven as it is for others. 
Moreover, the network support software provided by any two of the vendors 
differs in point of function and desiqh objectives. The m~in cancer~~ are 
that global as well as local networking be supported and that the global 
netvwrking support be general enough at c,ritical module levels to accommodate 
extensions to incorporate ARPANET protocols if these are not already supported. 
A further concern is tne extend to which a choice of a g~ven midi.computer' 
system furthers RADCs objective of STE technology transfer. Here the sheer 
number of such midicomputer systems available to potential STE users is a 
primary consideration. 

Fr6m this standpoini, the following caveats should b~ registered; 
first, those regarding Pascal support. The compile~s available to the 
candidate midicomputer systems differ in their·age and exposure to pro­
duction environment~. DEC Pascal has beeri available for less- than a year. 
Harris Pascal has not been reieased yet and is in the l.atter phases of 
implementation: Prime and SEL Pascal are also moderately new. By 
com pari son, the caridi date Pasca 1 compiler for· the· Perkin [lmer machines has 
been·around for·some time, o~iginally in a Univac incarnation. Documentation 
of the various compilers typiCallY touches on the more salient language 
features and operating system interfaces that are supported but provides 
little in the way of critical information such as the degree of opti­
mization achieved in the generated target midicomputer machine code or 
the friendliness of the host operating system to the Pascal software 
development process.· For instance, the SEL Pasca 1 user's manu a 1. focuses 
primarily on the grammar which the. SEL compiler recognizes and mentions 
very little about the Pascal user's interface to the operating environment, 
benchmark comparisons of SEL Pascai to SEL compilers for other languages, 
limitations on the amount of machine code·used to re(llize primitive types~ 
procedures, compiJer and run-time stack space,. and other "messy details" 

·essential to its usefulness i.n a production environment. Much the same is 
true of DEC Pascal~ as exp~riences in porting RSL/REVS to the VAX have shown. 
Moreover; new compiiers, like all other significant pieces of new software 
are bound to have bugs. These concerns ·put the NO~C Pascal compiler for 
the Perkin Elmer machines in a good light. However, .the Perkin El~er 
compiler, like its NOSC ancestor, does not support the DISPOSE service. 

Next, there are caveats aboutnetworking software. DECNET was 
originally designed and implemented for local networking within a tightly 
coupled.cluster of com~unic~ting processors. Unlik~ PRIMENET, DATUEB and 
the in~house development of networking software under way at Harris, which 
also support local networking, DECNET does not support global netwo~king 
among distant host processors. Moreover, the global.support provided by 
the others conforms to the X.25 packet-switching st~ndard. Apart- from 
this advantage, .there is some question about the generality of the global 
networking support ·provided· by the non- DEC host systems. PRIMENET, for 
instance, may well be highly modularized and parameterized since it supports 
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a:wide variety of packet-switching netwqrk standards, viz., the United. 
States • TELENEl and TY~INET, the C_anadi an DAJAPAC, ~reat Brjtai n 's ·rntE?r­
national Packet Switching Service (IPSS), and Fr~nce's. TRANSPAC as well as· 
the European Packe·f Switching N~twork, EURONET. · Presumably', ARPANET· support . 
would not be too difficult to achieve within the Prim·e networking software 
environrrient. By comparison, the documentation on networking software for . 
Perkin Elmer, SEL, and Harris systems doe~ not indicate the sort of geh~r~lity 
which Prime has obviously advertised: But this.may metely refl~ct a lack·· · 
of appropriat~ data which; in turn, rna~ reflect the fact the PRIMENET has-
been on the market lohger than the net~ofking software prbvided.by~th~· other 
vendors that support global networking. · · · · · · ·. · 

.Finally,j there are considerations due to the objective-of STE tech-~ 
no logy transfer. This constraint may well be the most. significant of a1l. 
There are more D~C VAX ll/780s than ther~~~e.of any of the other. candidate 
midicomputer STE host systems. Moreover, although DEC ~eith~r developed; 
nor supports H, there exists a. substantial and inc're·as·ing· amountof global· 
networking software support of the ARPANET protocols. Tnis software·has 
b~en developed largely by ARPANET host systefns' persomi~l operating 'ur'ide~ 
tQe s,tandard DEC VMS operating system or. the Berkerey Pagfng UNIX operating 
system. Most of these personnel work in .non-secr_et environments an_d might · 
thus be·.in a position to transfer their networking softwa.re technology iri 
the interests of STE technology transfer.-

7.:3 MIDI COMPUTER HOST SELECTION 

Ori cons i derati ori of the foregoing issues, we be 1 i eve that the. DEC VAX 
lt/780 is currently the best candidate to host the STE. ·Its immense pop~la­
ri)ty makes it ari appropriate vehicle ·for. widespread techno 1 ogy-. trans fer afford­
able by many users; and seems to ensure -ava'i 'labil Hy of b.etter: ARPANET support. 
Because REVS and PE~CAM are hosted on the~~AX, softwa~e.transfer costs are 
confined to site installationchanges and tt~ns.fer ofAUTOIDEF.· Early develop­
ment of ADA'compilers for the VAX will permit an early·l~nguage conversion. for 
S~E tools, if desired. On the' whole, although I/0 bottlenecking is known· to 
e>;ist, the VAX has high performance:and sufficient memory capacity; plus an 
adequate Pascal compiler. · 

. The next best choices are the Perkin Elme~ 3244 and Prime ]50' systems. 
The PE 3244 offers higher performance at a lower price, and is a class of 
machine more widely used in the DoD community .. Hov1ever, the existing P.ascal 
compiler need~ augmentation sicne it" laCks the -DISPOSE-function. Kansas .State 
lkiiversity has recently developed a Pascal compiler for. Perkin Elmer· mach.ines. 
but details of the language implementation;has not been confirmed; The·Pr.i-me 

I • . . .. 

s_xstem 1s slower and costlie'r than the Perkin Elmer system but has·several' 
a~tractive features. First, it i~ ai~ed at a time-sharing, cbmmercial data 
b~se environment. Its native data base management system uses· a ·CODASYL schema, 
as: does the REVS and AUTOIDEFtools.· Second, it appears to have an excellent 
Pascal compiler, meeting REVS requirements. Third_, it supports a w-ide variety 
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of commecial networking standards ·and may be easily adaptable to an APRANET 
interface. However. Prime aims mainly ~t the commercial ma~ket. and the DoD 
community seems to have overlooked Prime sys terns to· date·. 

We rank the Harris and SEL sy~tems behind the ahove candidates. and 
prefer the Harris-over the SEL because of its exceptional CPU speed and 1/0 
rat~ combination. However, neither of th~se systems have· been connected to 

.. the ARPANET. they are not widely used as yet, and there are many questions 
remaining about their Pascal compilers and networking capabilities. 

A DEC VAX 11/780 configuration should in~lud~ at least two megabytes of 
niain memory. Basic DEC VAX systems include a single disk and a: single tape 
unit of the purchaser•s choice, two Massbus ada~ters and a DZllA 8-line asyn­
chronous multiplexer. The low speed TEE-16 (45 in/sec) tape unit seems ade­
quate for the STE. Disk configurations should be ·chosen for overall system 
flexibility and a view toward long-term needs.. Three Rt~-:-03 disks are a 
minimum requir~ment. but larger RM-05 disks waul~ offer growth potential. 
This disk configuration is a matter of preference as lo·ng as. the disks are. 
removable (for secure operations,·a.requirement).· Among DEC users the disk 
drives manufactured by CDC (e.g .• the RM series) seem to enjoy a better repu~ 
tation than others. · · 

·The LPll-DA line printer (132 column, 96 character, 660 lines/min.) is· 
adequate for STE use. Either VT100 or VT52 alphanumeric terminals are accept­
able. If a card reader is desired, the CRll (300 cards/min.) seeins adequate .. 
Software shouid include the VMS operating system, the FORTRAN tompiler, and 
the·Pascal compiler. · · 

7.4 STE COLOR GRAPHICS TERMINALS 

Candidate color graphics terminals meeting the STE requirements in Para­
graph 3.1.4 were selected from the Data Pro EDP Buyer•s Bible and by contact 
with various vendors. Four terminals that were in the desired cost range 
were first identified: 

e Tektronix 4027 
o DEC VSll 

• Ramtek 6200A 
e Three Rivers CVD/2. 

The Tektronix 4027 is the preferred choice. It meets a 11 of the require­
ments in Paragraph 3.1 .4 and seems to be a popular color terminal at ARPANET 
nodes (see Appendix A). It is the only ••1ow cosC col~r terminal with 480 x 
640 resolution, compatible with that at the Bf/IDATC ARC: This format also seell_ls. 
ideal for the AUTOIDEF displays, and conversion from a Tektronix 4014 to a 
4027 would probably be easier than to a terminal from another manufacturer. 
The 4027 can be operated both locally and remote. 
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The DEC VSll is just becoming ava·ilable. Its .advantages ar~ design for 
use'wjth PEC computer systems and capability to ·use a 19 inch colo"r. monitor. 
The p"rincipal disadvantage is it.s 512 x 512 .resolution. ·REVS and AUTO~DEF 
displays would have to be reformatted to fit a square format. A Ramtek 6200A 
has lowe~ resolution (256 x 512).than is desirable, but TRW experience with 
it· on another ~ontract indicates that this is on the. borderline of adequac~ 
fo~ STE use. No detailed information was available on the CVD/2. However, 
its cost for cornparable capabiJity, lack of cursor display, and uncertain· 
interface to a hast probably make it, a fourth cho.i ce. 

A· Tektronix 4027 STE graphics installation sh.ould have two 4027 terminals 
sharing a Tektronix 4632 hard copy unit .(with 06 enhanced gray scale option). 
The . .4027 optional featu.res suited _to STE use are:._ 

• ._Option· 21 - l6K byte?·. additional display memory. 

Q)- ·Option 28 - l44K bytes additional .graphics memory.· 

· •· :option 31. - .Character Set Expansion. 

e " · Optiori 32 - Ruling Characters. 

o Option· 4~- V~deo Har~copy/Video Output Interfa~e. 

The approxi~ata cost per 4027 in this configur~tion is $16K, and the 4632 
hayd,~opy U8~t cost is approximately $5K. Thu~, total cost fdr the STE . 
gra.p~ics in$tallation is about $37K, plus cost of modems and cables dependent 
on the loc~tion of the terminals, and. the interface with,the STE host, compu­
ter~ t~ol)"thly maintenance costs are extra. (Note: prices are subject to · 
change ~nd, in 1980, are unstable for all types of DP equipment.) 

·' '· 
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.8.0 STE SECURITY CONSIDERATIONS 

This section briefly examines some of the implications of .operating. the 
STEin a single-level, dedicat~d ~od~ (i:e~, where a single classification 
level is concerned and all authorized users have need-to-know and clearance 
for all data in the system). This mode is a limited subset of the general 
multi-level security problem. TRW has prepared a detail~d treatment of re­
quirements for multi-level computer security system~ under a separate con~ 
tract. The reader is encouraged to consult [10] for appropriate requirements 
for single-level dedicated mode systems and pertinent DoD regulations. 

8.1 GENERAL SECURITY CONSIDERATIONS 

Security in current classified data processing systems is maintained 
·through use of conventional security measures -- clearance of users to the 
highest level, physical security of the computer installation and terminal 
locations, administrative security procedures governing access to and use of 
the data processing systms, encryption of communications, emanation security 
-- plus processing limitations .and access control software: With these 
security measures, proces~ing of compartmented information is limited by 
security regul'at1ons - DoD 5200.28 and DCID l/16 -- to one or the other of 
two security modes -:- dedicated, where a 11 users with access to the system 
have both a security cle'arance and need-to-know for all classified.material 
then contained in the system, and system high, where all users with access 

·to the system have a security clearance for the highest classification and 
most restrictive .type of material contained in the system butat least some 
users do not have a need-to-know for all classified material contained in 
the system. In either of these modes, actess to the system by users not 
cleared for all ~ompartments or classifications is not allowed~ Because com­
puter systems processing compartmented data must ~e either dedicated com­
pletely to ohe or the other of th~se modes or sch~duled for separate process­
ing periods for different compartments, timeliness of processing is limited 
and operating costs are increased. 

Contemporary computer systems do not contain the security controls 
· needed to allow processing in a true multi-level security mode and they 

generallY contain security vulnerabilities allowing evasion of any security 
controls. The principal vulnerabilities are in the operating system. software, 
which must control concurrent processing and resource shari~g for a large 

. number of users, provide user services, and interface directly with the hard­
ware. The complexity of operating systems is such that their'structure and 
functioning has not been well understood, leading to design and imPlementation 
errors and hiddeh capabilities not specified in the design. A further com­
plication 1s that operating systems are tested by the manufacturer on a limited 
number of machine configurations, but most users ha~e a configuration differing 
in some way fro~ the one on which the operating system was tested. 
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Most contemporary resource sharing computer systems are not secure 
because security was not a requir~ment of the initial hardware and software 
design and because there was not a generally acc~pted computer security 
definition usable a~~ basis for a secure design: Since th~ Ait·Fo~ce has 
effective means for implementing personnel, physica·l, communication, eman·a­
tion, and procedural security, the heart of the computer sy~t~m ~ecu~ity ·• 
problem is th.e security certification of the access controls in the· operating 
system and supporting software. ·· 

8.2 STE IMPLICATIONS 

An STE site with secure processing requirements-will nominall.y alternate 
between secure and open access processing modes. When the STE is· 6perati ng 
in a· single-level ·dedicated mode, compartments within, that mod~ are not an 
issue. Therefore, the problem is that of precluding access, direct or jndirect, 
to any and all parts of the system by unauthorized user while the. STE is· per-
forming operations on classified· data.. · 

The most obvious avenues of. penetration cari be·cl osed by traditi oha 1 · 
physical and emanation security measures (e.g.,, l-imited personnel access, 
positive disconnect of all external comm~nication lines, ~tora~e of tla~sified 
data on separate dismountable media, andeledromagneticshieldi·ng 6f,the 
facility where required). Howeve·r, more indire~t avenues of access~ thro.ugh 
the operating.system, are more difficult to close with confidence: ,.·. ·· · 

. . . . ' . . . . . ~ .. : . '. . ... " ' . 

i~ ·the absence of an exp~ns ive security kernel within the opera'ti ng ·' · 
system, the only high~confiden~e means of p~e~enti~g ind1rect atces~ is.~bv 
partition the. system operating in classified f!]Odeand··the· system operating· 
in open access mode into two disjoint systems. This would entail separate 
copies of the operating system for ea.ch mode,,purging of a·ll' res·fdual. data 
at mode transiti.ons, termination and recreation of the s.Ysteni at mode·transi­
tions under the.appropriateOS copy, and physical removal ofallmedia con'­
taining cl~ssified mode programs and·data, includ·ing the ·OS .copy, during open 
access mode, ynder strict op.erator procedures. · 

,· ·. 
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9;0 REVS IMPLEMENTATION LANGUAGE CONVERSION EVALUATION 

The purpose of Ta'sk 4 of the STE study was to evaluate the feasibility 
of rewriting REVS, currently implemented in Pascal, in one of the DoD approved 
Higher Order Languages (HOL). The candidate languages are as follows: 

1 FORTRAN 

1 COBOL 

• JOVIAL (J73) (MIL~STD-l589A) 

o ADA. 

A brief description of these languages are presented in Section 9.1. 

In Section 9.2, we identify the current REVS features/capabi.lities which 
would be ~ffected if REVS were to be converted to one of the candidate lan­
guages. A discussion of the ability of each candidate language to adequately 
support current REVS features/capabilities is also provided. 

In Section 9.3, we discuss the cost (person-months) and schedule esti­
mates for a feasible conversion. Also, we identify any software tools which 

- · could be utilized/developed to aid in accomplishing a cost-effective ~on­
version. 

_In Section 9.4,_ we· address the issue of the affect of an alternate 
·implementation language on the life-cycle costs of REVS in the STE where the 
tools will be Linder continuous enhancement and modi.fication. Finally, in 
Section 9. 5, we sJjmma rile the eva 1 uati on- and present our recommendation. 

9.1 CANDIDATE LANGUAGE SUMMARY 

This section contains a brief descri~tion of ~he design concepts and 
implem~ntation techniqu~s of the candidate languages. 

'FORTRAN Language 

A FORTRAN program consists ofama1nprogram and a set of subprograms, 
each of whith is compiled individually, with the object programs linked during 
loading. Each subprogram is compiled into a strictly statically allocated 
area containing the compiled executabl~ code, System-defined data areas, and 
global data areas :(COMIV10N ·blocks). No run-time storage management is provided. 
Subprograms cominuni.cate•only by accessing COMMON· blocks, passing -parameters 
(call by reference), .and passing control through -non-recursive, non-nested 
subprogram calls. Data structures consist of mu1lti-dimensional homogeneous 
(length and type of each element in' the str.ucture is the same), fixed-size arrays. 

COBOL Language 

COBOL is a highly structured language designed especially for business 
applications. A~ important characteristic is the English-like_syntax which 
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makes most programs readable enough to b~ l.argely self-documenting. Numerous 
optional" "noise words" are provi'ded in the language to improve readability. 
The language .design is based on static run-time structure (no dynamic run-time 
storage manag~ment). Subprograms are allowed but with these restrictions: 

. ~ ~- . ' .. 

i . 
e Data can be' s:hared' on_ly by passing ·parameters (call-by-name). 

Files c~nnot be shared between a main program and a subroutine 
(must be explicitly opened/closed by each). 

• Subprograms cannot be nested or called recursively. 

MostiCOBOL programs are written as a single routine using a com~on global 
referencing environment for the entire program. The PERFORM statement allows 
the COBOL programmer to organize code into functional units that can be 
invoked from different points.within the same program unit. With this feature, 
true,subprograms (with parameters and local variables) are infrequently used. 
Multidimensional homogeneous (length· arid type of each item of the structure is 

. the same), and heterogeneous (structure items can have varying 1 engths and 
types) fixed-size data structures can be constructed. 

; I, 

JOVIAL J73 Language 

J73- is a "block-structured" language composed ·of a mai.n program, any num­
ber of COMPOOLs (common poo1· of~data/subprogram declarations ~harable between 
separately compiled subprograms), and a set of subprograms. Subprograms ·can 
be either disjoint, having no portion in common, or nested (static nesting), 
one---subprogram' completely enclosing the other~· .Subpro_grams can also be recur­
sive:·· Dynamic run-time storage management is provi-ded to ·support ·recursion 
since the maximum number of recursive activations, an.d 'hence the additional 
storage space;· cannot be determi-ned at· campi le· time·. : Sub,program parameter 
pass:ing is accomplished by call-by-value, call-by-reference, or call-by-value-
resu.lt. · ·· .. {· · · 

Like PascaJ ~ J73 is· a, "strongly typedu 1 anguage.;: Every data object 
declared in·a program must·pe associated with a ".type",.which<defines its 
logical pr6perties and the nperations that can be performed on the object. 
J73 supports complex multi-dimensional homogeneous/heterogeneous data 5truc-
tures. 

ADA ;Language ,. ·:? 

··The proposed ADA,prbgramming language is also a· "block;,.str-uctured" 
language being designed ,in ·accbrdance·:with ·DoD requirements. It is 'influenced 

·by the Pasca 1 and JO~IAL fami'lY of 1 anguages .. An: ADA:·p·rogram i:s a. -sequerice of 
higher level program uni'ts~;-whi·ch can· be. compi-led .separately. ··Program units 
may·be subprograms (which define ex€cutable·algorithms), packageimodules 
(which define collections. of ·entities), or task modules .(whi·ch define-con­
current computations). Subprograms can be nes~ed (statically) and can have 
parameters (call-by-valLw, call-by-reference, and call-by-value-result). 
Also, subprograms can be recursive (dynamic nesting). A package-module can be 
used to define a common. pool of data·(like JOVIAL' COI~POOLs), or a collection 
of related subprograms. · ·. · 
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ADA is also a "strongly typed" language requ1r1ng each data object to be 
associated with a specific "data type". Like JOVIAL J73, multi-dimensional 
homogeneous and heterogeneous collections of data items can be defined. Also, 
like Pascal, complex data structures can be created dynamically during pro­
gram execution (dynamic run-time storage management). 

9.2 CONVERSION IMPACT UPON EXISTING REVS FEATURES 

The features and capabilitieS of REVS which are dependent (either directly 
or indirectly) upon the current implementation language, Pascal, are presented 
in this section, with an evaluation of the adequacy of each candidate language 
to support these features/capabilities. 

9. 2. 1 REVS Program Architectures 

REVS is a highly structured software program. The goal of the REVS 
designers was to separate complex operations into several well~defined 
functions (modules), each of which in itself could be declared to be correct 
by inspection. Each function, or module, is decomposed into smaller ~nd 
smaller units (procedures) until the lowest level of the function is speci­
fied. Pascal, a "block-structured" language, provided the original designe;·s 
with the module feat~res desired. A block (or procedure) -is allowed-to have 
one or more procedures completely enclosed ·(statically nested) within itself. 

The usefulness of statically nested procedures (i.e., subprograms) lies 
not just in the potential it provides for modularizing the computations, but 
in its ability to protect data that are the exclusive concern of a specific 
function/module from encroachment or contamination by other modules. For 
example, data declared in a procedure is said to be local to that procedure, 
and shareable (global) with all its' nested (or inner) procedures, but not 
shareable with outer or non-nested procedures. If the same data name is 
declared in both an outer and inner procedure, the outermost variable becomes 
inaccessible to the inner procedure. · 

The current implementation of the REVS program itself consists of 1108 
Pascal procedures with nine levels of static nesting. 

FORTRAN Implementation 

A FORTRAN implementation would require that REVS' current modular archi­
tecture, utilizing statically nested subprograms, be redesigned since FORTRAN 
does not support this feature. Each nested subprogram would have to be un­
nested, with careful attention given to the shared data. For example, a 
Pascal d~ta object declared in a procedure is shared by all protedur~s nested 

. within that procedure. A FORTRAN implementation would require that all 
shareable data be made global (declared by COMMON stftements), or passed as 
parameters between subprograms. FORTRAN global data is allocated a fixed 
amount of storage space at compile time. Since all data (approximately 5000 
Pascal identifiers requiring 209K bytes of storage space) in the current 
implementation of REVS are allocated dynamically in reuseable space (see 
Section 9.2.2), a FORTRAN implementation would significantly increase REVS 
run-time memory requirements. 
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A FORTRAN implementation would require a total redesign of the REVS 
architecture plus increase the run-time storage space requirements, without 
adding addi't,i on a 1 capabi .1 ity or features. 

COBOL Implementation 

A COBOL implementation of REVS would also require a total redesign, and 
because of COBOL's English-like syntax which makes programs self-documenting, 
a significant amount of additional code would be produced, increasing con-
version costs. ·· · 

i 
.·The COBOL language does not prov.ide the nested subprograms, and it limits 

dati sharing between subprograms to parameters passing only. Therefore, REVS 
woul·d have to be re-written as a single COBOL program with all 5000 data 
identifiers de'clared global in the DATA DIVISION section (increasing run-time 
memory requirements}, and all existing REVS procedures (ll08 of them) replaced 
by in-line paragraphs ofcode executable by the COBOL PERFORM statement. 

JOVIAL (J73) Implementation 

The current REVS modular architecture could be implemented without change 
with JOVIAL J13, since statically nested subprograms are supported . 

. . 
ADA Implementation · 

The current REVS modular architecture can be implemented without change 
with the proposed DoD standard language, ADA .. 
' -

9. 2. 2 Dynamic Storage Managemen·t 

The REvs· implementation language provides for two types of'memory storage 
.manageme~t; static and dynamic. Static management'~s utilized during program 
com~ilation to allocate a fixed amount of sp~ce required for the program 
instructions and input/output buffers: The storage spac~ required by the pro­
gram's 'data structures and variables is not allocated until required dur·ing 
program execution (dynamic allocation). Dynamic storage management involves 
the reuse of storage space fOr multiple purposes during program execution~ 
Two types of dynamic storage allocation are used in the current implementation 
of REVS -- stack and heap allocation. 

At the start of REVS execution, a sequential block of memory is reserved 
for·use as a dynamic run-time stack (120K bytes). Storage space is allotated 
on the top of this stack automatically (stack storage management) each time a 
procedure is executed/activated. This space (activation record) is used to 
record procedure- 1 i nkag~ information, the temporaries required for expression 
evaluation; parameter transmission, arid space for local data objects declared 
within .the procedure. If an executing procedure calls another, or itself 
(recursive call to be discussed in Section 9.2.3), a new activation record is 
placed on the top of the stack (dynamit nesting of activation records). Upon 
procedure termination, that procedure's activation record is popped off the 
stack _with resumption of the origi,nal. procedure .. 
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The run.-ti.me stack of activation records grows upon entry to an inner 
level of dynamic nesting and shrinks on exit therefrom .. 

Since REVS ?tares all local/shareable data.within the dynamic run:..time 
stack, rather th~n statically at compile time, a significant amount of memory 
space is saved., In the. current REVS design, the maximum number of "different" 
procedures active at any, one time is only 29 (this number does not account for 
multiple activatiQns ofb~ recursive procedure). The data storage space required 
if all 1108 REVS Pascal procedures were active at one time would be 209,257 
bytes, which is ?~K bytes larger than the current stack space allocation of 
120K bytes. Dyn<;~.(Tlic stack allocation of memory space not only reduces the · 
total run-time (Tl.~!llOry requirements, it also provides a mechanism for supporting 
recursive s.u.bprogram cails (see Section ,9.2.3). 

The second type of dynamic storage management used in REVS. is heap storage · 
allocation. A heap is a block of memory within which pieces c·an be allocated 
and deallocated explicitly through Pascal language constructs (NEW and DISPOSE). 
The built-in function. NEW isused to obtain space dynamically during program 
execution. This spa<;~ (data structure) is not referenced directly by name, 
but indirectly by a pointer variable (points to the location containing the 
value). Heap space qllocation is useful for implementing data structures whose 
size varies as th~ Rrogram is running. For example, linked-lists where the 
number of elemerits is unknown at compile-time. Linked lists.are extensively 
used by the RADX Function. Th~ir size is dependent on both the operation to 
be performed and the size of the application data base. Once this space is no 
longer needed, the built-in function D~SPOSE is used to recover the space for 
reuse. 

REVS implementation of dynamic storage allocation combines the heap and 
stack within a common block of memory (l20K bytes), but starting at opposite· 
ends and growing toward the middle. This feature provides for economical use 
of dynamic storage space. 

FORTRAN Iniplementatioh 

FORTRAN was designed for strictly·static storage allocation. To convert 
REVS and maintain existi~~ capabilities, the following re-design·would be 
required. 

• All data must be allocated storage space statically at 
compile-time rather than dynamically during execution. 

• All variqble size data structures would have to be redesigned, / 
either by sp-ecifying a maximum fixed size or by using secondary 
storage ·such as .a disk file. In either case, a major redesign 
of the affected subprograms/data structures would be -required. 

I 
• A fixed tradeoff between memory space and run-time performance 

would have to be made.· This would result in unused memory space 
for s~all a~plications and operation~dependent performance 
degradation for large applications. 
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COBOL Implementatiq~_ . 
. ' . 

The COBOL language does not support dynamic memory allocation. Therefore, 
the same changes/modifications as were described for a FORTRAN implementation 
would be required if REVS. were converted to COBOL. 

JOVIAL. J73 Implementafiori 

The JOVIAL ·J73 1 anguage supports dynamic stack all oca,ti on but not heap 
allocation·. Therefore, the stack would have to be resized to meet dynamic 
stack-only ~equirements since stack and heap space would na longer be obtained 

. from a cOmfllon block of; memory. A scheme for managing a statically defined 
b 1 ock of storage space through the use of data structure overlays would have 
to be desi~ned to replace the cur~ent heap management logic. The data struc-
_tures size. (for. example, a linked list) w·ill be statically fixed at compile 
time. Therefore, a tradeoff will have to be made between memory space usage 
an.d proc~ssing capabi.l ity. ·· 

AbA Implementation 

The ADA language supports both stack and heap dynamic management .. One 
diff~rence that currently exists is .that ADA doesn't provide a language con­
struct for explicitly disposing/releasing allocated dynamic space. Once 
dynamic vitriables are allocate.d heap space, they remain allocated until the 

· program/subprogram unit containing the access/pointer variable· definition 
(this ~arjable points to the location in the heap containing the data), com­
pletes executi~n. In some ADA implementations, this space may be recovered 
for reus~ through a garbage collection technique. Without a language con-· 
struct si~ilar to the Pascal DISPOSE construct, th~ REVS. heap management logic 
will have: to be redesigned. 

9.2.3 Re~ursive Subprogram Calls 

Pastal permits procedures to invoke themselves, either directly, or in­
directly 'via another procedure. These procedures are said to be recursive. 
Many algorithms are most naturally represented using recursion; for example, 
traversi rig ·binary trees· ·in the REVS data base.. Hi stori ca lly, because of the 
influenc~ of FORTRAN an·d COBOL which do not support recursion, recursive 
algorithms have been neglected for·an iterative solution. 

Recursive execution of a subprogram requires that the changeable infor­
mation (local variables, etc.) associated with a subprogram being executed be 
stored separately for each instance of executiori/~ctivatioh. As was described 
in the previous section, a _dynamically managed ruri-time stack is utilized 
~ithin REVS to store a prb~edure's changeable infqr~ation/data for each 
activation. -

.~ REVS utilizes recursive logic ~xtensivelj. The followina REVS functional 
modules have the indicated number of recursiVe subprograms. 

0 REVS Executive (12) 

~ RSL Translation (56) 
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e Requirements Analysis and Data Extraction (31) 
o Interactive R NET Generation (3) 
e Simulation Generation (8) 

e CALCOMP Plotting (1). 

Of the 1108 Pascal procedu~es, 111 of them are recursive. Also, the Compiler 
Writing System, used to generate the RSL Translator, has one recursive pro­
cedure. 

FORTRAN Implementation 

FORTRAN does not support recursive algorithms. In order to support re­
cursion, FORTRAN would require a dynamically created run-time stack of 
subprogram linkage data (return addresses, etc.). Since FORTRAN is not im­
plemented with dynamic storage management, recursive calls are illegal. 
Therefore, in order to convert REVS to FORTRA~, the 111 REVS recursive sub­
programs would have to be redesigned to solve the specific probl~ms 
non-recursively. 

COBOL Implementation 

The COBOL language, like FORTRAN, doesn't support recursive algorithms. 
See discussion under "FORTRAN Implementation" above. 

JOVIAL J73/ADA Implementation 

Both languages provide for recursive subprogram calls. 

9.2.4 Structured Programming Techniques 

Structured programming constructs are used to provide code that is easier 
to read, understand, debug, and maintain. Structured programming, in its most 
limited definition, consists of a limited number of constructs that specify 
the flow of control of the program. For example: 

• Sequences of two or more operations. 
• Conditional branch td one of two operations and return 

(IF a THEN b ELSE c). 
e Repetition of an operation while a condition is true 

(DO WHILE). 

Each of the three. structures itself represents a proper program. Using com­
binations of these basic structures, any program can be built .. REVS also 
includes additional Pascal constructs where necessary to provide more readable 
and self-documenting programs, more efficient prograrrming, and programmer con-
veniences. I 

For example, the CASE statement is used to select one statement (or 
series of statements) for execution out of a set of statem~nts. The emphasis 
in REVS is on clear, not clever, programming. 
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FORTRAN' Implementation . 

FORTRAN 77 does support structured programming, but few compilers are 
currently available. 

FO~TRAN IV (1966 standard) does not support structured programming, but 
itructured FORTRAN Preprocessors are available for use. 

I 

T~erefore, without using FORTRAN 77, or a preprocessor, the conversi6n of 
Pascal structured programming constructs into FORTRAN IV equivalent constructs 
would require hee.vy use of statement labels and GOTOs which are corren'tly rarely 
used. !A FORTRAN implementation would be a step backwards. 

COBOL 1mplemenation 
I 

C.OBOL does pro vi de the basic constructs used in structured programm·i ng; 
except~for t~e CASE statement which could ~e accomplished by nested IF~~. 

. . 
JOVIAL J73/ADA Implementation ... : :; 

' 
Bbth of these languages support the structured programming techniqu~s 

currently ~sed in REVS. 

9.2.5 Data Structures 

When a software designer uses a higher order 1 anguage to solve a prob l_em, 
he mus

1
t first decide on a way to represent or encode the prob 1 em data in terms 

of th~ data structures provided by the language. The Pascal data structures 
utilized within REVS are: 

o Simple variables 
e Multi-dimensional homogeneous structures 
o Multi-dimensional heterogeneous structures 

Pascal constructs allow each item of a structure to have a self-documenting 
descriptive identifier to help aVoid misuriderstandings about sophisticated 
complex structures during program li.fe-c.ycle maintenance. 

FORTRAN Implementation 

fORTRAN does not support heterogeneous structures. A conversion to 
FORTRAN would require all such structures to be redesigned in terms of basic 
homogeneous arra,ys. Such a step waul d detract from the code 1 s readabi·l i ty.: 

. I 

COBOL/JOVIAL J73/ADA Impleme~tation 

.Each of these candidate 1 anguages pro vi de the data structures necess·ary 
to adequately re~resent the current REVS design. 
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9.2.6 Automatic Consistency Checking 

Pascal requires that all data items be explicitly declared and associated 
with a specific data type (integer, real, character, etc.). In addition, a 
range of values that the specified data type can take on can be specified. 
For example, an integer variable count is declared to have a sub-range of 
integer values 0 through 9. During compilation, if an assignment statement is 
detected setting COUNT to anything other than 0 throu~h 9, it is flagged as an 
error (attempt to assign an out-of-range value). However, if the value of the 
11 integer typell variable TEST is assigned to COUNT, this statement cannot be 
analyzed for correctness until ~un-time (the value of TEST is unknown at com­
pile time). During program execution, Pascal will optionally check all 
assignment statements for correctness. This run-time consistency checking is 
performed whenever REVS is run in the Pascal 11 debug mode 11 (which is the normal 
configuration). 

None of the candidate languages provide run-time consistency checking, 
but ADA and JOVIAL J73 do provide compile time type checking. In order to 
maintain run-time checking (range checking) if REVS were to be converted, in­
line code would have to be added to perform the checks. This would be 
expensive in terms of the additional execution time required to perform the 
test, and the space required to store the extra code. Without range checking, 
whether implemented automatically by the language compiler or manually by the 
software designer, a process critical parameter could be assigned a value 
which, when utilized, could produce unpredictable results. Therefore, a cost 
effective app,roach would be to pro vi de run-time consistency- checking for only 
those items identified to be operationally critical. 

9.2.7 Input/Output 

REVS utilizes both Pascal built-in procedures and FORTRAN routines to 
·perform Input/Output to and from external storage devices (disk files, mag­

netic tape, cards, and interactive terminal) .. The Pascal procedures are used 
to read/write from a device sequentially, while the FORTRAN I/0 routines are 
used whenever random access i~ required. All the candidate languages provid~ 
built-in I/0 procedures, with one exception. JOVIAL J73 does not, _but does 
support the calling of FORTRAN I/0 routi~es. 

9.2.8 Automatic Generation of RSL Translator 

The RSL Translation function, within REVS, provides the mechanism to add, 
modify, or delete information currently stored ·in the ASSM. The RSL trans­
lator is written in Pascal with relevant portions generated automatically by 
the Lecarme-Bochmann Compiler Writing System (L-B CWS). 

The RSL translator can be thought of as operating in two phases; the 
analysis of the input source text and the synthesis1of the object text. The 
analysis phase consists of the decomposition of the source text into its basic 
parts. The synthesis phase consisti of the construction of equivalent object 

. program parts from these basic parts. The analysis phase normally builds 
tables which are used in both analysis and synthesis operations. In terms of 
RSL translation, the ASSM serves as one large table containing the accumulated 
information both from this translation execution and prior translation executions. 
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Conceptually, the translator performs four functions distriButed over the 
analysis and synthesis phases. These functions are lexical analysis, syntax 
analysis, semantic analysis, and error handling. There is a considerable 
degree of interaction between these functions. In particular, the syntax 
analyzer can access any of the other three functions and the error. handl.i ng· 
function may be accessed by any of the other three functions. 

The lexical analyzer or scanner is the simplest part of the translator. 
Its function is to scan the characters of the source text from left to right 
and build the actual symbols of the data base. These symbols include identi­
fiers, key words, and single or multiple character punctuation marks. These 
symbols are variously referred to as lexical or syntactic units, tokens, or 
atoms. In terms of RSL, these units are divided into punctuation marks, words, 
numbers, and t~xt strings. The symbols are passed on to the syntax analyzer, 
usually in the. form of integers or other fixed-length symbols rather .than 
vaiiable length strings of characters. 

The syntax analyzer or parser performs the more difficult ·task of 
determining how the syntactic units received from the lexical analyzer can be 
grouped together to form the hierarchical structure, called the derivation 
tree, which indicates how the source text decomposes into the rules of the 
grammar defining the language. 

The semantic analyzer associates a meaning with the derived hierarchical 
structure. It checks the structure for semantic correctness and stores 
necessary information about the structure in the symbol table,which for REVS 
is the ASSI'1. 

This· orderly scheme of lexical, syntax, and semantic analysis is adequate, 
however, only if the source text contains no errors. In practical applications, 

·the source text can be expected· to very often contain errors which must be 
recognized and treated by the translator. These errors can be either lexical, 
syntactic; or semantic in natur~; requiring a general error handling function 
~ccessible from t~ese three analyzers. · 

Lecarme-Bochmann Compiler Writing System 

The Lecarme-Bochmann Compiler Writing System (L-B CWS), developed at the 
University of Montreal, accepts as input a~ integrated description of a 
language (RSL) and produces as output a translator for that language. 

·There are several advantages to use of a syntax-directed CWS: 

0 It is readily responsive to changes in the desi~n of the 
language, whether to accommodate changes in user's needs, 
or in order to ach:ieve internal consistency. 

• Use of metalinguistic descriptiori as input to the CWS assures 
that the language intended by the designers is actually 
i~plemented. · 

e A compiler or translator written with a good CWS is vastly· 
simpler to code and debug, therefor·e reducing maintenance 
costs. 
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., ._ ... 

The RSL Translator's lexical and syntax analyzer functions are ·currently 
generated using the Lecarme-Bochmann CWS. Therefore, if REVS were to be con­
verted, the CWS could have to be redesigned in order to produce the RSL 
translator's lexical and syntax analyzers in the candidate language. Since 
ADA and JOVIAL J73 are similar to Pascal with respect to the following: 

G Block-Structured language 
e Strongly typed language 

o Recursion 

the redesign would not be as extensive as a FORTRAN or COBOL implementation. 

9.2.9 Automatic Generation of Simulator Program 

The automatic simulator generation capability in REVS takes the ASSM 
representation of software requirements and generates a discrete event, closed­
loop simulator written in Pascal. The simulator functional components are 
shown in Figure 9-1. 

The REVS simulator generator (SIMGEN) transforms the ASSM representation 
of software requirements into "simulator models" in the Pascal language. Pro­
cessing flow through the simulated software system is specified in the ASSM 
as requirements networks, also called R NETs. Each R NET identifies an 
ordered sequence of processing steps (ALPHAs) to be performed by the software 
system. The REVS simulator generator produces a Pascal procedure for each 
R NET to be simulated. Each processing step (ALPHA) referenced on the R NET 
becomes a call to a user-supplied model of the process (BETA or GAMMA), stored 
as an attribute of the ALPHA. 

Two distinct types of simulators may be generated by REVS. The first is 
a simulator which uses "functional models (BETAs)" of the processing steps 
(ALPHAs) to be performed by the subject system. This type of simulation 
serves as a means to validate the overall required flow of processing against 
higher level system requirements. The other type of simulator uses analytic 
models (GAMMAs), i.e., models that use·actual algorithms similar to those 
which will appear in the actual software to perform complex computations. 

· These mode 1 s/ a 1 gorithms are written by the REVS user in Pasca 1 and RSL 
statements and entered into the ASSM as textual attributes of the ALPHAs. The 
RSL statements provide the BETAs and GAMMAs with data file ~anipulation cap­
abilities which augment the Pascal language. During simulator generation, the 
RSL statements, identified by scanning the BETA or GAMMA text for RSL keywords, 
are translated into Pascal statements necessary to accomplish the specified 
RSL operation. The RSL keywords recognized by SIMGEN are ·as follows: 

I CREATE - The CREATE statement adds a ~ew record to a file. 

SELECT - The SELECT statement is used to make available to the 
BETA or GAMMA the contents of one record (instance) 

· in a fi 1 e. 
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o DESTROY - The DESTROY statement removes the currently 
selected record from a file. 

8 FOR EACH - The FOR EACH statement is an iterative form of the 
SELECT statement. It allows a s·irnple means of 
applying common operations to multiple records in 
a file. 

These RSL statement keywords, as well as any new keywords which might be 
defined, must not conflict with the REVS implementation language reserved 
words. 

The data definitions and structures used by the simulator are synthesized 
from the required data elements, their relationships, and their attributes in 
the ASSM. The Pascal code generated from the ASSM is automatically combined 
with externally generated simulation support routines (executive, event calen­
dar, event manager, data managers, etc;), and a System En~ironment and Threat 
Simulator (SETS), a generic name assigned to the driver, is developed external 
to REVS in Pascal. Each external subsystem referenced by the software require­
ments is modeled within the driver. The simulation Support routines are as 
follows: 

e Simulation Executive - The Simulation Executive controls the 
sequence of execution of R NET and external subsystem models. 
The execution sequence is determined by the order of events on 
the event calendar. Code is generated by SIMGEN such that the 
required models can be invoked during Simulation. 

e Event Calendar - The event calendar is a time-ordered linked 
list of events (execution of R NET or external subsystem 
models) to be executed. -

• Simulation Event Manager - The Simulation Event Manager provides 
the.utilities necessary to correctly maintain the event calendar. 

e Simulation Data Manager - The Simulation Data Manager supports 
requests for data from. both the simulation driver subsystem 
models and the software requirements models. SIMGEN produces 
the source code necessary to access the data structures con­
structed from the ASSM data definitions. 

Finally, the various parts (SIMGEN generated code and externally generated 
code and externally generated code) are compiled and linked producing an 
executable simulator. A REVS Executive utility (written in host system 
ass~mbly language) is called to invoke the compiler and linkage editor to 
generate the load module. Further details of the simulation con~truction 
software and the complex stream of job steps invoked are discussed in 
Paragraph 2.2.4. I 

If REVS were to be converted to one of the candidate languag~s, the 
SIMGEN software would.have to.be redesigned to produce code in t~e candidate 
language. ·Also, the externally generated components, for example SETS, would 
have to be developed in the new language. Since ADA and JOVIAL J73 are 
similar to the current ~EVS implementation language with respect to the 
fo 11 owing: 
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e Block-Structured language 
0 Strongly typed language 

1 Support of recursive algorithms 

the redesign would not be as extensive as a FORTRAN implementation. A COBOL 
implementation would not be feasible because COBOL is very limited and awkward 
with respect to arithmetic capabilities necessary to support simulations for 
c3 and weapon system problems. However, the REVS SELECT construct would not 
be allowed in ADA because it is a reserved keyword with an entirely different 
ADA meaning. A new RSL keyword, such as CHOOSE, would be necessary, thus 
altering the current RSL baseline definition. This change would require up­
dates to all user manual, methodology manual, and training manual documentation, 
as well as changes to the REVS softw~re. 

9.2.10 Auiomati~ Generation of Sim~lation Post-Processor 

When generating an analytic simulator (discussed in Section 9.~.9)~ REVS 
also; automatically generates a simulation post-processor for use in evaluating 
the 'performance requirements to be met by the specified software. The ASS IV! 

rep~esentation of each requirement has an attribute, TEST, which is used by 
the ;software specifications engineer to define an executable test Iilodule. In 
order .to generate the data/information to be processed by this user-defined 
TEST module, VALIDATION POINTs are defined at various points in the software 
requirements networks. -Each time during s i mul ati on that the. processing flow 
reaches a VALIDATION POINT, data/information are transferred to a recordinq 
system which records-the relevant information for post-simulation analysis: 
During post-processing, an executable TEST module can then determine whether 
accyracy and timing performance requirements have been satisfied by the 
software. 

A TEST is written in standard Pascal and RSL statements and entered into 
the ASSM as textual attributes of a ·specific software performance requirement. 
The RSL statements are used·to access validation point data/information, and 
are translated by SIMGEN into legal Pascal code. Since these special state­
men;ts are similar to those IJtilized in BETAs and GAMMAs, their description and 
conversion considerations are not repeated in this discussion (see Section 
9.l.9). ' 

The Pascal code generated for a TEST is automatically combined with 
externally generated post-processor supoort routines: 

o Simulator Post-P~ocessor Executive 
o Simulator Post~Processor Initialization 

1 Simulator Post-Processor Data Manager 

for post-processot execution outside the control of REVS: 

The languag~ conversion consid~rations are the same as those presented 
in Section 9.2.9 (Automatic Generation of Simulator Program). 
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9.3 CONVERSION COST/SCHEDULE 

The cost associated with the conversion of REVS Pascal code into each of 
the candidate language~ is a function of the following: 

Q· How much ~xisting code can be utilized without change? 

· G How much existing code must be rewritten because of language· 
syntax and semantic differences? 

0 How much existing code must be redesigned because the candidate 
language does not adequately support a REVS feature/capability? 

Variations among the candidate languages in syntactic structures (sym­
bolic ~btation) will necessitate the rewrit~ng of REVS code in the correct 
symbolic notation. The underlying meanfng (semantics) will usually be the 
same even thouqh the symbolic notation i:s different. For example, FORTRAN and 
JOVIAL use the symbol ·=·, while Pascal and ADA use .• :=• to represent an assign­
ment operation. The types of syntax chariqes required if REVS is converted are 
as follows: 

e - Id~ntifiers (length restrictions, type of characters). 

• Operator symbols. 

1 Keywords and reserved words (designate statement type 
del'imiters within statements). · 

·• Comm~nts and noise.words. 
o Blanks. 

e De 1 i miters . 

·,. 

No matter which language is selected, nearly every one of the 47,530 Pascal 
statements will have to be rewritten. This task can be simple where a one-to­
one correspondence between language constructs exists, rather than an absence 
of or significant variation of a constr~ct i.n the target lan~u,oe: Close 
correspondence makes construction of an automated language-to-language trans-
1 a tor a cost-effective approach to c·onversion. Of the four candidate 1 anguages, 
ADA rates first with respect tosyntax similarity with Pascal, followed by 
JOVIAL, FORTRAN, then COBOL. 

When programming in a langua~e that does not provide a desired feature 
directly, the programmer necessarily must provide his own implementation 
utilizing the primitive elements provided by the language. In the previous 
section (9.2), the features and capabilities of REVS which are dependent, 
either directly or indirectly, upon the current implementation language, 
Pascal, were presented with a discussion of th~ adequacy of each candidate 
language to support those features. ·Table 9.1 p~esents a rating (maximum 
score of forty-four) of how well each candidate language supports the existing 
features. The lower the rating, the greater the redesign necessary. A zero 
indicates that the feature is not provided by the language, requiring the 
desian of an alternate so1~tion~ The results of the evaluation indicate the 
lowest amount of redesign if existing REVS code were converted to ADA. 
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Table 9.1 Candidate Language Co~parisons 

---
+ 
REVS~ CANDIDATE ADA JOVIAL FORTRAN IV COBOL FEATURE . . LANGUAGE J73 (1966 STD) 

MOQLILAR ARCHITECTURE 4 4 4 0 

STATICALLY NESTED PROCEDURES 4 . 4 0 0 ., 

DYNAM~C STORAGE MANAGEMENT 3 2 0 0 

RECURSIVE ALGORITHMS 4 4 0 0 

PARAMETER PASSING 4 4 4 0 

DATA TYPING 4 4 0 0 

INPUT/OUTPUT 4 . 2 4 4 

DATA STRUCTURES ·4 4 2 4 

·sTRUCTORED· PROGRAMMING CONSTRUCTS. 4 4 0 3 
LANGUAGE SYNTAX SIMILARITY 3 2 . 1 .: 0 

'AUTOMATIC RANGE CHECKING 3 3 0 0 
... 

: 

TOTALS 41 37 15 11 

This conc.lt.isiori 1s supported by an independent study sponsored by the 
Air Force Avionics Laboratory under Contract F33615-78-C-1466. The results 
("DoD's ADA Compared to Present Mi 1 i tary Standard HOLs, A Look At i'lew Capabi 1 i­
ties'') were presented at the 1980 Nati6nal Avioni~s and Electronici Conference 
(NAECOM), by Systems Consultants, Inc. [11]. ADA, rated first, scored 373 
points out of a possible 394 points. JOVIAL J73 was second with 290 points 
followed by FORTRAN at 177. (COBOL was not evaluated in that survey. However, 
the Navy CMS-"2 language, with 210 points, scored ahead of FORTRAN, relegating 
FORTRAN to .last place.)' . 

The kinds o.f software tools needed to translate.REVS Pascal tode iDto'_qne 
of the-candidate languages are as follows: 

• Interactive ·Text Edito_r. 

i Candidate language compiler for the host machine~ · 
e Program to identify all potentially recursive subprograms 

(available in-house at TRW). · · · · · ··· 

0 .. Program to identify static nesting of subprograms 
· (avaiia'ble in-house at TRt~). 

e.· Program to automatically replace specifjc Pascal symb6lic. 
notation with that of the candidate language. This will be 
possi.ble where a .one-to-one mappinq between language constructs 
exists (must be developed). · 

As an example of automatic translation potential, the .Pascal W~ILE state­
'ment 
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WHILE NUMBER > 0 DO 

BEGIN 

SUM:=Sum + Number; 
NUMBER:=Number- 1; 

.END; 

can be automatically translated into the following ADA statement 

WHILE NUMBER > 0 LOOP 

SUM:=Sum + Number; 
NUMBER:=Number- 1; 

END LOOP; 

The estimated effort to accomplish the conversion of 47,530 Pascal state­
ments into each of the candidate languages, develop/modify required documentation, 
and perform validation testing is as follows: 

LANGUAGE ESTIMATED MANMONTHS ESTIMATED SCHEDULE (MONTHS) 

15 ADA 108 

JOVIAL J73 145 18 

FORTRAN 280 24 

COBOL 394 '36 

It can be seen tha:t converting REVS to a similar type language like ADA, re­
qu1r1ng a_m1n1mum amdunt_of rede~ign, is the most cost-effectiv~ approach. 
Th~se estymates were val1dated w1th TRW's Software Cost Estimating Program 
(SCEP). fhey represent technical/engineering effort and do not include 
management/secretarial support costs. 

9.4 CONVERSION IMPACT UPON LIFE-CYCLE MAINTENANCE 

Software life-cycle maintenance costs are influenced primarily by the 
following: 

• Understandina the existinq software. This implies the need 
for good docGmentat ion, good traceability between requirements 
and code, and well-structured and reada~le code. · 
Modifying the existing software. This implies the need for 
modular software which minimizes the side effects of changes 
to code or data structures. 
Revalidating the modified software. This implies the need for 
software structures which facilitate selective retest, a 
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standard set of validation tests, and aids for making retest 
more thorough and efficient. 

It would not be cost effective to rewrite REVS in one of the interim 
HOLs. First, the current Pascal implementation.of REVS exists at five sites 
within the DoD community. Enhancements made at the various sites can now be 
easily shared by all, reducing the total DoD REVS maintenance cost. Second, 
since ADA, the proposed DoD standard HOL, is a Pascal-like language, it would 
be very cost-effective to install the Pascal version in the STE until suffi­
cient reliable ADA compilers are available within the DoD community. This 
interim period could be utilized ~y STE personnel to become familiar with the 
existing features/capabilities, and those enhancements made at other sites for 
poss·ible ·inclusion in the eventual ADA version .. 

A caveat should be noted here about the use of a HOL for requirements 
ipecification that is the same as the eventual implementation language. While 
there are human engineering benefits, in that the user need not be familiar 
with two languages, there is a greater danger. Namely, that of developing a 
design, and imposing it as a set of requirements. Description of requirements 
using.Pascal as a base language ~as the advantage of separating requirements 
definition from design of th~ operational softw~re. · ·. 

9'. 5 LANGUAGE CONVERSION CONCLUSIONS 

· __ The purpose of this study was to evaluate the feasibility of rewriting 
REVS, currently implemented in Pascal, in one of the DoD approved HOLs. The 
results of our evaluation indicate that the most cost-effective conversion 
would be to ADA. JOVIAL J73 would be second choice. In view of the future 
trends ~n programming languages over the next ten years, c6nversion to 
FORTRAN or COBOL would be a costly step backward. The trend in the micro­
processor/person-a 1 computer community is toward Pasca 1 instead of the o 1 der 
traditional languages, such as FORTRAN. Because of Pascal's increasing popu­
larity, its similarity to ADA, and since other DoD installations are usin9 
the Pascal version of REVS, we recommend a Pascal version for the STE,uritil 

·a proven ADA compiler is available. A-J73 1mplem~ntation is possi~le, but 
i:ts ·use and support would be 1 irilited pr1marily to the Air Force. This would 
deny the Air Force difect incorpor~tion of REVS improvements made on behalf 
of other DoD sponsors. A decision on an·ADA or J73 im~lementation should be 
suspended until the future of both languages becomes more clear. · 
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APPENDIX A 

ARPANET HOST 
HARDWARE/SOFTWARE ENVIRONMENT DATA 

ARPANET HOST:· Air Force Weapons Laboratory, Kirtland Air 
ACRONYM: AFWL 
LIAISONS: NAME ARPANET ADDRESS 

· Roy Ma~ll afwl@i4-tenex 
MACHINE MAKE/MODEL: CDC Cyber-176, 730, 6600 
OPERATING SYSTEM: NOS/BE 

Force Base 

PHONE NO. 
(505) 844-2581 

PRIMARY STORAGE: l megabyte each (Cyber-176 has some 11 fast disk 11 ECS) 
SECONDARY STORAGE: Many 844s, many 814s 
GRAPHICS/PLOTTER HARDWARE (adequate software support): 

Tekfronix 4014, FR80 and Calcomp support.· No color raster support. 
COMMUNICATIONS LINES: 10 dial-up, many dedicated lines. 

PASCAL COMPILERS: Unknown 
FORTRAN COMPILERS: ·unknown 

STAT US/COIVIMENTS: 
Liaison knows little abo~t AFWL user services and operation~. He could 
recommend rio other contacts. Presumably Pascal and FORTRAN compilers 
are avai,lable acco_rding to operations personnel at Eglin Air Fo.rce Base 
but the.ir.origins and extensions are undetermined. 
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ARPMET HOST: Argonne Natio.nal Laboratory, Argonne, ·Jll. 
ACRONYM: ANL 
LIAISONS: NAME ARPAN~T ADDRESS 

· Lawrence Amiot ~miot@BBN-TENEX 
IVJACHINE MAKE/IVJODEL: l IBM 370/195, 2 IBM 3033's 
OPERATING SYSTEM: OS-MVT, OS-MVT-TSO, VM370 
PRIMARY STORAGE: 41VIB (370) 6fVIB (3033's) 
SECONDARY STORAGE~ . 

NO. DISKS CAPACITY MAKE 
32 317.5 MB ITEL .. 
14 200 MB ITEL 
44 100 MB ITEL 
14 · lOb MB IBM 
24. 29 MB IBM 

GRAPHICS/PLOTTER HARDWARE- (adequate software support): 
Tektronix 4014, plans for 4027 
Calcomp, Versatek plotters 

COMMUNICATIO~S LINES: numerous Telnet lines <=1200 baud 

PASCAL COMPILERS: not currently -supported. 
FORTRAN COMPILERS: more than adequate. 

STATUS/COMMENTS: 

PHONE NO~ 
( 312) 972-5432 

MODEL 
7330-12 

. 7330- ll 
7330-l 
3330 
2314 

ANL is willing to upgrade Telnet lines to medium term C'5 year") user's 
requirements. 
Will acquire IBM Pascal as per user requirements. 
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ARPANET HOST: Brookhaven ~ational Laboratory, Applied Math. Dep~~ 
ACRONYM: BNL 
LIAISONS: NAME ARPANET ADDRESS 

Graham Campbe 11 . gcampbe 11 @bbn-tenexb 
PHONE NO. 
(516) 345-4168 

MACHINE MAKE/MODEL: 2 CDC 6600s, 1 CDC 7600 
OPERATING SYSTEM: SCOPE 3.4 

PRIMARY STORAGE: . 9 megabytes + 8 megabytes of ECS on. 6600a, 
.5 megabytes small core+ 4 megabytes ECS on 6600b~ 
.5 megabytes small core+ 4 megabytes large core on 7600 

SECONDARY STORAGE: 1.44 gigabytes on 6600a, 972 megabytes on 6600b, 
2.2 gigabytes on 7600. 

GRAPHICS/PLOTTER HARDWARE (adequate software support): 
Tektrontx 4027 and CALCOMP software support. · 

C.OMMUNICATIONS LINES: "many dial-up connections.,. 2 1200 baud li.nes, 3.· 
Arpanetdedicated lines. .., 

PASCAL COMPILERS: University of Washingt.on·. 
~ORTRAN COMPILERS: Standard CDC version 4.5. 

STATUS/COMMENTS: 
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ARPANET HOST: Co~puter Corp. of Am~rica, Cambridge, Mass. 
ACRONYIVJ: CCA 
LIAISONS~ NAME ARPANET ADDRESS 

· Don Eastlake dee@CCA 
MACHINE MAKE/MODEL: DEC VAX-11/780 
OPERATING SYSTEM: Paging Unix Berkeley version 32 

PRIMARY STORAGE: 3. 75M 
SECONDARY STORAGE: 2 ~M03 1 s, 4 300MB drives · · 
GRAPHICS/PLOTTER HADWARE (adequate softwat·e support): 

PHONE NO. 
(617) 491.,-3670 

3 AED-512 color raster di~~l~y~. · Input: ·touch, joystick, moose 
Houston Instr. plotter :0 11 flatbed. Calcomp compatible· dial-in/ 
dial-out · 

COMMUNICATibNS LINES: 6 dial-up lines, some TELNET lines, 
Virtual terminal fil e-.transfer 11 line 11

• capability 

PASCAL COMPILERS: released with Unix tapes. 
FORTRAN COMPILERS: relea~ed with Unix tapes. 

STATUS/COMMENTS: 
Not on net yet. Plan to be in ne~~ ·future. 
The AED-512 device is tomparable to a RAMTEK color raster device 

(512x512 pixels, high-speed D operations) 
The Unix-released Pascal compiler is a pseudo-code generator, 
which is inadequate to RSL/REVS requirements. A version of NBS 
Pascal which is partially adequate is being upgraded for release 
to Uni~ environments in the new future. 
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ARPANET HOST: David Taylor Naval Ship Research and 
ACRONYM: DTNSRDC 

Development Center 

LIAISONS: ·NAME ARPANET ADDRESS 
Robert Tinker dtnsrdc@usc-isie 

MACHINE MAKE/MODEL: CDC 6400, 6600 
OPERATING SYSTEM: NOS/BE 

PRIMARY STORAGE: . 9 megabytes on each machine 

PHONE NO .. 
(212) 227-1428 

SECONDARY STORAGE: 1.1 gigabytes (6400), 3.3 gigabytes (6600) 
GRAPHICS/PLOTTER HARDWARE (adequate software support): 

1 
Support for CALCOMP plotters and Tektronix 40~7 color raster .displays. 

COIVI~LINICATIONS LINES: 4 300 baud TELNET lines, 
· 10 300 baud dialup TTY compatible. 

PASCAL COMPILERS: University of Mi n"nesota. 
FORTRAN COMPILERS: Standard CDC revision 4.7, level 45. 

' 

STATUS/COMMENTS: 
DTNSRDC would require a hardware upgrade of its TELNET li~e~ to sup~ort 

' the minimum requirement of 4800+ baud communications over the ARPANET 
for interactive graphics support. 
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ARPANET HOST: Air For~e Armam~nt Divi~ioh.~ Eglin Aii Force Base 
ACRONYM:. EGLIN 
LIAISONS: :.NAME 

· Herbert Spies 
MACHINE MAKE/MODEL: CDC 6600, 
OPERATING SYSTEM: NOS/BE 

ARPANET ADDRESS 
spies@bbn-tenex 

Cyber 176 

PHONE NO. 
(904) 882-4267 

PRIMARY STORAGE: .9 megabytes (6600, l.S·megabytes (Cyber 176). 
SECONDARY STORAGE: 4.14 gigabytes. . . 
GRAPHICS/PLOTTER HARDWARE (ad~quate software ·s~pport): 

· Tektronix 4014 and CALCOMP plotter software support. FR80 
support. 

COMMUNICATIONS LINES: ????? 

PASCAL COMPIL~RS: · ????? 
FORTRAN COMPILERS: FORTRAN '66, version 4. 7, revision level 45 .. 

STATUS/COMMENTS: 
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ARPANET HOST: ,Navy Fleet Numerical Oceanography Center. 
ACRONYM! FNWC 
LIAISONS: NAME ARPANET ADDRESS 

Brian Bradford fnwc@us~-isie 
MACHINE MAKE)~ODEL: CDC 6500 
OPERATING SYSTEM: SCOPE 

PRIMARY STORAGE: . 9 megabytes + 7 megabytes ECS 
SECONDARY STORAGE:. 4:8 +gigabytes. 
GRAPHICS/PLOTTER HARDWARE (adequate software supp6rt)~ 

Tektronix 4014 .and VERSATEK plotter s~~port. Nci color 
COMMUNICATIONS LINE$: ????? 

PASCAL COMPILERS: none. 

PHONE NO .. 
(408) 646-2201 

ra~ter Sl.lpport. 

FORTRAN 1 COI~PILERS: Standard CDC FORTRAN extended to version 4.5. 

STATUS/1COI~MENTS: .. · . · .. . . ' . 
Inadequate language and graph1cs hardware support. FNWC is an ARPANET 
user and cannot be accessed over the net as a server. 
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ARPANET HOST: MIT Lincoln Laboratory 
ACRONYM: LL . . 
LIAISONS: · NAME ARPANET ADDRESS 

Edward Haines ha,nes@LL · 

MACHINE MAKE/MODEL: Ahmdah 1 470/V7 
OPERATING SYSTEM: . VM370, VS370 

PRIMARY STORAGE: 8 megabytes. 
SECONDARY STORAGE: 5.4 gigabytes~ 
G~APHICS/PLOTTER HARDWARE (ad~quate ~oftware support)~ 

Tektronix 4014, 4015 
Ramtek color raster terminals 4-5 of them 

COMMUNICATIONS LINES: 8 Telriet lines. ·-·. 

PASCAL COMPILERS: Ac;quiring IBM .Pascal 
FORTRAN COMPILERS: more than adequate. 

STATUS/COMMENTS: 
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ARPANET HOST: Massachusetts Institute of f~ch~ology. 
ACRONYM:, MIT~MULTICS 
LIAISONS: NAME ~. ARPANEl Ao'DRESS 

. . . ·;.. Richard Scott scott@~fT~MULTICS 
MACHINE" MAKE/MODEL: HONEYWELL H-6180 
OPERATING SYSTEM: MULTICS 

PRIMARY STORAGE: 2.56M 
SECONDARY STORAGE: approx. 380M 
GRAPHICS/PLOTTER HARDWARE (adequate software suppoft): 

Tektroni 4027 · · · · · 
i Ca1comp (905 device) . 
~OMMUNICATIONS LINES: > >7 for both' int~ractive ~nd FTP 
I 

•;,,_ .. 

~ : .. ';. ~·. _. . ... 

PHONE :N·o ~ .. : : · ... 
- . (6f7) 253-7020 

---: .... · ;·· 
' ~ '· • '. j~ 

-· • ~ ~ ' ,i •• , . • 

. ·, .. 
·.·· .. : .,.; .:.-. 

i . • ' . 

; .. ~ ; ... ·: ; ; : .. 

'PASCAL COMPILERS: University of Ca1gar:-y., . 
~ORTRAN COMP~LERS: MULTICS-FORTRAN. ·'Upgrad~d to 1 77 ~~xt y~~~j: ... ·.·. 

~TATUS/COMMENTS: 
· University of Calgary Pascal, aka PYXIS, may not be adequate· ·to·the· .. 

requirements of RSL/REVS translation. 
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ARPANET HOST: Naval Air Qevelopment Center.: 
ACRONYM: .. NADC 
LIAISONS:· NAME. ARPANET.·AOORESS 

· Ted· Calkins nadc@usc-isie 
MACHINE MAKE/MODEL: 2 CDC 6600s, Cyber 175, Cyb~r 760 
OPERATI~G SYSTEM: KRONOS/NOS . 

PRIMARY.STORAGE: .9 megabytes (6600s), 2 megabytes· (Cybers) 
SECONDARY STORAGE: 9.66 gigabytes for user files. 
GRAPHICS/PLOTTER HARDWARE (adequate software· support): 

Tektronix 4027 and CALCOMP support. 
COMMUNICATIONS LINES: ??? 

PHONE NO. 
(215) 441.,.2474 

PASCAL COMPILERS: University of Minnesota versions 2.0 and 3.0. 
FORTRAN COMPILERS: Versions 3 and 4 st~ndard CDC releases. 

STATUS/COMMENTS: 
The STE has been installed if not fully integrated at NADC, 
except for AUTOIDEF. 
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ARPANET HOST: Naval Ocean Systems Center 
.ACRONYM: NOSC-CC 
LIAISONS:··.· NAME ~-ARPANET ADDRESS 

Charles Messinger messinger@NOSC-CC · 
MACHINE MAKE/MODEL:. Univac 1100/82 (250nsec./instr.) 
OPERATING SYSTEM: Standard Univac 1100 Operating System 

PRIMARY STORAGE: 8-me~abytes; · · . 
SECONDARY STORAGE: 2 8450 drums~ 12 8433 disk~- . 
GRAPHICS/PLOTTER HARDWARE (adequate softwar~ support).:· 

Tektronix 4013,4024 ~ · 

PHONE NO·.· · · · 
. (7~4) 225~21~~ . 

. ,· ... ·· ' ·' - . . : ~ . 
·. 

'• .. 
· .. :·. 

' .-· 

Zeta Plotter 30 11 max. drum (Cal comp cornp. software·) 
COMMUNICATIONS LINES: 4 cornm. ports now, >20 in next 1-1.5 years 

·. 

PASCAL COMPILERS: Mik~-B~ll ~~ NOSC ·Pascal ., .. 
FORTRAN COMPILERS: ASCI FORTRAN level 9 revision 1 

..... ·. 

STATUS/COt~MENTS:- : · 
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ARPANET HOST: Naval Service Weapons CeDter, Dahlgran, Virginia 
ACRONYM: NSWC-DL . . . . .. 
LIAISONS: .NAME 

· Eugene Stemp 1 e 
MACHINE MAKE/MODEL: CDC 6700 
OPERATING SYSTEM: SCOPE 3.4 

ARPANET. ADDRESS 
n~wc-dl@us~~isie 

PRIMARY STORAGE: .9 megabytes 
SECONDARY STORAGE: 3.32 gigabytes. 
GRAPHICS/PLOTTER HARDWARE (adequate software support):· 

PHONE NO. 
(703) 663-8788 

DISPLA, TEKVIEW suppo~t for CALCOMP. Previ~wing oh Tektroni~· devices. 
COMMUNICATIONS LINES: 250Kbyte/sec. channel supporting·"l6 virtual TTY 

TELNET connections or<= 4 FTP connections (1 FTP =·4 TTY virtual 
connections). 

· .. ·. 

PASCAL COMPILERS: Winograd, University of Colorado. 
FORTRAN COMPILERS: FORTRAN 1 66, ve~sion 4.6, level 433 

STATUS/COMMENTS: 
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ARPANET HOST: N~v~l Surf~c~ Weapo~~ Cent~~' Whit~ Oak 
ACRONYM~ NSWC-WO 
LIAISONS: NAME AR.PANET; ADDR,ESS 

Robert Archer n~~~@uic~i~ie 
MACHINE MAKE/MODEL: CDC. 6500 
OPERATING SYSTEM: . NOS 

PRIMARY STORAGE: . 9 megabytes. 
SECONDARY STORAGE: 2.2.gigabytes~ . . . 
GRAPHICS/PLOT.T;ER HARDWARE :(adequate software support): 

CALCOMP ·and Tektratii'x 4027 support. . · ' 
COMMUNICJ1.TIONS liNES: ????_? . . 

.•. 
.. 

· z,1·.· 

PHb'NE Nd: ··- ; . . 
.(.2.02) 394-:-1909 

; •. · ... ' . ' , ... 
'· - . f· . 

• • '"' "'<' 

:.I. '.·: 
l • . . •• 

.··, 
. : ... :· . ' ; ~ . ~ ~ . . . . \ 

. ~.. . : 

· . . ·:.. .. ;. ~ ' ... \. 

I 
PASCAL COMPILERS: University of Massachusetts version 2.0 in ~-se·r 'lib;:ar'Y' .. 
FO~TRAN COMPILERS: Standard CDC version 4. 7 revis.ion l_evel .4_5 .. , 

. . ' .... ' ; · .. ,., ~ 

STATlDS/COMMENTS: 
. ~ ' . •. ~. . ~ : .. : 
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., .. 
ARPANET HOST: Naval Underwater System~ Ce~ter, New·London, Conn. 
ACRONYM: NUSC 
LIAISONS: NAME AR~ANET ADDRESS 

Don Quiqley dquiqley@NUSC-NPT 
MACHINE MAKE/MODEL: DEC VAX-ll/780 0L 

PHONE NO. 
(203) 447-4349 

OPERATING SYSTEI'~: ELF {Arpanet Interface), VMS.(host) version 1.6 

PRIMARY STORAGE: 1 megabyte 
SECONDARY STORAGE: 4 RP06's for 2 drives 
GRAPHICS/PLOTTER HARDWARE {adequate software support) 

Tektronix 4014, Calcomp 1055 deVicesr NUSC is developing in-house 
device-independent. graphics package. · 

COMMUNICATIONS LINES: 1 9600 ba~d Server Telnet line. 

PASCAL COMPILERS: U. of Washingtbn, i.e~, DEC Pascal 
FORTRAN COMPilERS: A good FORTRAN '77. 

STATUS/COMMENTS: 
No FTP support yet.· Plans to have it soon via ELF interface. 
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ARPANET HOST: Naval.'Weapons 
. ACRONYM: NWC 

LIA I SOI~S·: .. NAfVIE 
John Zenor 

MACHINE MAKE/MODEL: Univac 
OPERATING SY$TH1: ·ELF (Imp 

Center, China .Lakei .CA 

ARPA.NET ADDRESS 
iiwc@USC-I~JE 

1100/40 .. - . 
interface.);· EXEC-.8 (host) ' 

PRIMARY STORAGE: 136K primary, .5M secondary core .. 
SECONDARY STORAGE: approx. 3G. . . . . . 
GRAPHICS/PLOTTER HARDWARE,(adequate software .support):. 

PHONE NO>· 
(714) 939~5559,2 

.l 

• '-I 

Tektronix· 4014, 4027, (DISPLA software). 
COMPBO microfiche---> plot xerox photo 

COMMUNI CATIONS LINES: a· few supporting ..4800b commu.ni cati on:s. · · 
! ' • ,l·' 

PASCAL COMPILERS: Mike·Bal1•s NOSC comptler. 
FORTRAN 'COMPILERS: Latest Univa·c ASCri Fortran. ... i: '. ' : 

STATUS/COMMENTS: 
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. ARPANET Hos:T:~ ,·:Rome·Air Developriieht<Center, .Griffiss AFB,.NewYork 
ACRONYM: RADC-MULTICS . 
LIAISONS: NAME · ARPANET.ADDRESS 

Robert Walker walker@RADC-MULTICS 
MACH(NE MAKE/MODEL: . HONEYWELL -6l80 ' 

PHONE NO. 
(315) 330-2501 

OPERATING SYSTEM: MULTICS ... 

PRIMARY STORAGE~ 3 megabytes. . . 
SECONDARY STORAGE: 912 megabYtes... . , . . 
GRAPHICS/PLOTTER HARDWARE (adequate.software ~upport);~ . 

2-10 Tektronix 4014's, 1 Intecolor colOr raster :t~rminal .(keyed. input). 
Zeta 36" drum plotter (3 pen holder, micro proc. controller, off-line) 

COMMUNICATIONS LINES: 20 entries in virtual interactive terminal .line table, 
8 FTP ports. 

PASCAL COMPILERS: . ~~iversity of Calgary, Pi~IS. 
FORTRAN COMPILERS: Close to ANSL Sufficient)y robu~t 

STATUS/COM~1ENTS: ·. . -. 
University of Calgary "Pascal" which HONEYWELLP)ans to upgrade, release, 
and support, especially in MULTlCS environments is the only accessible 
compiler but it may not bi adequate to· RSL/REVS requirements. · 
The Intecolor device has a micro processor controller with dual floppy 

·disks and will· support 9600 baud communication. 
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ARPANET· HOST:· lJnive.rsity of· ·California at l·o.s-·A-ng·ele~s .:·.- · ... ·L: .• 
ACRONYfvl: UCLA-CCN ·:.'.•.· :.· :' · -: 
LIAISON-S: ·NAME ARPANEfADDRESS ,. PHONE N'O. · 

' Robert Braden · braderi@UCLN·CCN .·. ~ ··· (2:13) 825-7518 . . . ~. •. . . . ; ,:. '; ' 

I~CHINE MAKE/MODEL: IBM 370/3033 6 mi p machine ·· 
OPERATING STORAGE: OS/MVT release 21.8, under VM release 6.· '-~-· c'·'· ... :·· 

PRIMARY STORAGE: 12 megabytes. · '· · ·. 
SECONDARY STORAGE: 319,5 gigabytes. . . . , . 

-' ,, ... 
. ; GRAPHICS/PLOTTER HARDWARE ·(adequate softwa-re support):_·· "·. 

. Ramtek· 8100 raster · ,. · ·· 1 . • . • ·• · .. ' · · - '· 

:Acqui.ring IBM color ras·te_r· havdWare·· '·;, ~· 
:cALCOMP · -. . .. - . . . · · · · · ' 

COMMUNICATIONS LINES: ''100 dialup ASCII ports, 6 leased-line pbrfs (two of 
which are high-speed), 6 NETRJS virtual terminal ports for ARPANET. . . . . . ' . ~ . ' ' ~ " .. 

PASCAL COMPILERS: IBt4· Pascal, Hitachi Pascal, Wate-rloo Pa'scal.· ·;· : .. ·· 
FORTRAN COMPILERS: Standard IBM release. . . ·\ : ~ ', . 

.. STATUS/COMMENTS:.. . .. :· · ,. :; · 
So1ne' question whethe-r FORTRAN' campi ler supports MASK, SHIFT,: ENCODE and 
DECODE. ' · · , :_. 

. •. ~ '•' ._ . ·~ ' . .. ~ " . 

. . ' : 'l ·. \ i' ~ . 

~ ' .. 
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MISSION 
of 

Rome Air Development Center 
RAVC plano and exec.u.teo tc.eoea.Jtc.h, deve!opmeV!X, :teo:t and 
.6 e!ec.:ted ac.qlL-Wition ptc.ogtc.a.m-6 in J.Juppotc.:t o6 Command, CoYL:t!r..o£ 
Communic.ation.o and IV!XelLLgenc.e (C3IJ ac.tivilieo. Tec.hvU.c.a£ 
and enginee!Ung J.Juppotc.:t w{.:thin a.JteM o6 :tec.hnic.a£ c.ompe:tenc.e 
i-6 ptc.ovided :to ESV Ptc.ogtc.am 066ic.eo (POJ.J) and o:thetc. ESV 
e!emen:t-6. The. p!Unc.ipa£ :tec.hvU.c.a£ mii.JJ.Jion MeM Me 
c.ommunic.a.tioYl.-6, etec.~omagnetic. guidanc.e and c.onttc.o£, J.Jutc.­
veiUanc.e o6 gtc.ound and aetc.oJ.Jpac.e. ob_i ec.:U, iV!Xelligenc.e da:ta 
c.oilec.tio n and hancLUng, in6 otc.matio'n J.Jtj-6 :tern :tec.hnotog lJ, 
ionoJ.JpheM.c. ptc.opagation, J.Joud J.J:ta:te J.Jc.ienc.eo, mic.tc.owave 
phtjJ.Jic.J.J and etec.tAovU.c. tc.e.eiabiti:ty, maiV!Xainabiti:ty and 
c.ompatibility. 




